Recursion squares

In the square ABCD is inscribed a square so that its vertices lie at the centers of the sides of the square ABCD.The procedure of inscribing square is repeated this way. Side length of square ABCD is a = 22 cm.

Calculate:
a) the sum of perimeters of all squares
b) the sum of area of all squares

Result

Σ p =  300.45 cm
Σ S =  968 cm2

Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

To solve this example are needed these knowledge from mathematics:

Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator.

Next similar examples:

1. Infinity
In a square with side 18 is inscribed circle, in circle is inscribed next square, again circle and so on to infinity. Calculate the sum of area of all these squares.
2. Right angled
From the right triangle with legs 12 cm and 20 cm we built a square with the same content as the triangle. How long will be side of the square?
3. Euklid4
Legs of a right triangle have dimensions 244 m and 246 m. Calculate the length of the hypotenuse and the height of this right triangle.
4. Isosceles IV
In an isosceles triangle ABC is |AC| = |BC| = 13 and |AB| = 10. Calculate the radius of the inscribed (r) and described (R) circle.
5. Six terms
Find the first six terms of the sequence a1 = -3, an = 2 * an-1
6. Theorem prove
We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
7. Geometric progression 2
There is geometric sequence with a1=5.7 and quotient q=-2.5. Calculate a17.
8. Series and sequences
Find a fraction equivalent to the recurring decimal? 0.435643564356
9. Infinite sum of areas
Above the height of the equilateral triangle ABC is constructed an equilateral triangle A1, B1, C1, of the height of the equilateral triangle built A2, B2, C2, and so on. The procedure is repeated continuously. What is the total sum of the areas of all tri
10. Length IT
Find the length (circumference) of an isosceles trapezoid in which the length of the bases a,c and the height h are given: a = 8 cm c = 2 cm h = 4 cm
11. Triangle ABC
In a triangle ABC with the side BC of length 2 cm The middle point of AB. Points L and M split AC side into three equal lines. KLM is isosceles triangle with a right angle at the point K. Determine the lengths of the sides AB, AC triangle ABC.
12. ISO Triangle V2
Perimeter of RR triangle (isosceles) is 474 m and the base is 48 m longer than the arms. Calculate the area of this triangle.
13. ABS CN
Calculate the absolute value of complex number -15-29i.
14. Isosceles III
The base of the isosceles triangle is 17 cm area 416 cm2. Calculate the perimeter of this triangle.
15. Vector 7
Given vector OA(12,16) and vector OB(4,1). Find vector AB and vector |A|.
16. Euclid2
In right triangle ABC with right angle at C is given side a=27 and height v=12. Calculate the perimeter of the triangle.
17. Equilateral triangle v2
Equilateral triangle has a perimeter 36 dm. What is its area?