3 cats

3 cats eat 3 mice in 3 days. How many mice will eat 10 cats in 10 days?


n =  33


Solution in text n =

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!

To solve this example are needed these knowledge from mathematics:

Next similar examples:

  1. Book reading
    books_30 If we read the book at a speed of 15 pages a day, we read it 3 days before we read it at a speed of 10 pages per day. If I read at 6 pages per day, how many days will I read the book?
  2. Sweater
    colours_3 Dana confuses sweater and wool has a choice of seven colors. In how many ways she can choose from three colors to the sleeves?
  3. Digit sum
    cisla_7 How many are three-digit numbers that have a digit sum of 6?
  4. Triangles
    triangle_234 Five sticks with a length of 2,3,4,5,6 cm. How many ways can you choose three sticks to form three sides of a triangle?
  5. Holidays
    ndr Of the 35 students of class were 7 on holiday in Germany and just as much in Italy. 5 students visited Austria. In none of these countries was 21 students, all three visited by one student . In Italy and Austria were 2 students and in Austria and Germany.
  6. Cookies
    poleva In the box were total of 200 cookies. These products have sugar and chocolate topping. Chocolate topping is used on 157 cookies. Sugar topping is used on 100 cakes. How many of these cookies has two frosting?
  7. Three students
    terc2_2 Three students independently try to solve the problem. The first student will solve a similar problem with a probability of 0.6, the second student will solve at a probability of 0.55, and the third will solve at a probability 0.04. The problem is resolved
  8. 40% volume
    workers_41 40% volume with 104 uph (units per labor hour) 8 people working. What is the volume?
  9. Right triangle eq2
    rt_triangle_1 Find the lengths of the sides and the angles in the right triangle. Given area S = 210 and perimeter o = 70.
  10. Camp
    tabor In a class are 26 children. During the holidays 16 children were in the camps and 14 children on holiday with their parents. Determine the minimum and maximum number of children that may have been in the camp and on holiday with their parents at the same
  11. Three friends
    gulky_9 Three friends had balls in ratio 2: 7: 4 at the start of the game. Could they have the same number of balls at the end of the game? Write 0, if not, or write the minimum number of balls they had together.
  12. Square into three rectangles
    stvorcove-cisla Divide the square with a side length of 12 cm into three rectangles with have the same circumference so that these circumferences are as small as possible.
  13. Two rectangles
    rectangles2_2 I cut out two rectangles with 54 cm², 90 cm². Their sides are expressed in whole centimeters. If I put these rectangles together I get a rectangle with an area of 144 cm2. What dimensions can this large rectangle have? Write all options. Explain your calcu
  14. Digits
    seq_5 Show that if x, y, z are 3 consecutive nonzero digits, zyx-xyz = 198, where zyx and xyz are three-digit numbers created from x, y, z.
  15. Rectangles
    rectangle_15 The perimeter of a rectangle is 90 m. Divide it into three rectangles, the shorter side has all three rectangles the same, their longer sides are three consecutive natural numbers. What is the dimensions of each rectangle?
  16. Utopia Island
    doktori A probability of disease A on the island of Utopia is 40%. A probability of occurrence among the men of this island, which make up 60% of all the population (the rest are women), is 50%. What is the probability of occurrence of A disease among women on Uto
  17. Prove
    two_circles_1 Prove that k1 and k2 is the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0