If the segment of the line y = -3x +4 that lies in quadrant I is rotated about the y-axis, a cone is formed.

What is the volume of the cone?


V =  7.4


Solution in text V =

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!

For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.

Next similar examples:

  1. Slope
    lines.JPG Calculate the slope of a line that intersects points (-84,41) and (-76,-32).
  2. Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.
  3. Equation of circle 2
    circle_axes Find the equation of a circle which touches the axis of y at a distance 4 from the origin and cuts off an intercept of length 6 on the axis x.
  4. Right angled triangle 2
    vertex_triangle_right LMN is a right angled triangle with vertices at L(1,3), M(3,5) and N(6,n). Given angle LMN is 90° find n
  5. Perpendicular
    slopeplane What is the slope of the perpendicular bisector of line segment AB if A[-4,-5] and B[1,-1]?
  6. Slope form
    lines_2 Find the equation of a line given the point X(8, 1) and slope -2.8. Arrange your answer in the form y = ax + b, where a, b are the constants.
  7. Trapezoid - intersection of diagonals
    intersect_trapezoid_diagonals In the ABCD trapezoid is AB = 8 cm long, trapezium height 6 cm, and distance of diagonals intersection from AB is 4 cm. Calculate trapezoid area.
  8. Line
    negative_slope Straight line passing through points A [-3; 22] and B [33; -2]. Determine the total number of points of the line which both coordinates are positive integers.
  9. Center
    center_triangle In the triangle ABC is point D[1,-2,6], which is the center of the |BC| and point G[8,1,-3], which is the center of gravity of the triangle. Find the coordinates of the vertex A[x,y,z].
  10. Curve and line
    parabol The equation of a curve C is y=2x² -8x+9 and the equation of a line L is x+ y=3 (1) Find the x co-ordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C?
  11. Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  12. Line
    img2 Line p passing through A[-10, 6] and has direction vector v=(3, 2). Is point B[7, 30] on the line p?
  13. Angle between lines
    angle_two_lines Calculate the angle between these two lines: ? ?
  14. Cuboids
    3dvectors Two separate cuboids with different orientation in space. Determine the angle between them, knowing the direction cosine matrix for each separate cuboid. u1=(0.62955056, 0.094432584, 0.77119944) u2=(0.14484653, 0.9208101, 0.36211633)
  15. Two forces
    forces_1 The two forces F1 = 580N and F2 = 630N have the angle of 59 degrees. Calculate their resultant force F.
  16. Triangle
    sedlo Triangle KLM is given by plane coordinates of vertices: K[-2, -20] L[4, 1] M[-16, 4]. Calculate its area and itsinterior angles.
  17. Angle between vectors
    arccos Find the angle between the given vectors to the nearest tenth of a degree. u = (-22, 11) and v = (16, 20)