# Side c

In △ABC a=2, b=4 and ∠C=100°.

Calculate length of the side c.

Calculate length of the side c.

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Diagonals

Calculate the length of the diagonals of the rhombus if its side is long 5 and one of its internal angle is 80°. - Greatest angle

Calculate the greatest triangle angle with sides 197, 208, 299. - Four sides of trapezoid

In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles. - Diagonals in diamond

In the rhombus is given a = 160 cm, alpha = 60 degrees. Calculate the length of the diagonals. - Angles by cosine law

Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem). - Scalar dot product

Calculate u.v if |u| = 5, |v| = 2 and when angle between the vectors u, v is: a) 60° b) 45° c) 120° - Angles

The triangle is one outer angle 56°30' and one internal angle 46°24'. Calculate the other internal angles of a triangle. - Clock face

clock face is given. Numbers 10 and 5, and 3 and 8 are connected by straight lines. Calculate the size of their angles. - Scalene triangle

Solve the triangle: A = 50°, b = 13, c = 6 - ABCD

AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD - Trapezium ABCD

In the figure, ABDC is a trapezium in which AB || CD. line segments RN and LM are drawn parallel to AB such that AJ=JK=KP. If AB=0.5m and AP=BQ=1.8m, find the lengths of AC, BD, RN and LM. angle D=angle C=60 - The pond

We can see the pond at an angle 65°37'. Its end points are 155 m and 177 m away from the observer. What is the width of the pond? - Reference angle

Find the reference angle of each angle: - Angles

In the triangle ABC, the ratio of angles is: a:b = 4: 5. The angle c is 36°. How big are the angles a, b? - Vector sum

The magnitude of the vector u is 12 and the magnitude of the vector v is 8. Angle between vectors is 61°. What is the magnitude of the vector u + v? - Laws

From which law follows directly the validity of Pythagoras' theorem in the right triangle? ? - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?