# Odd/even number

Pick any number. If that number is even, divide it by 2. If it's odd, multiply it by 3 and add 1. Now repeat the process with your new number. If you keep going, you'll eventually end up at 1. Every time. Prove. ..

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 2 comments:**

**Dr Math**

always convergent to x = 1

see - https://en.wikipedia.org/wiki/Collatz_conjecture

he conjecture is named after Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.

see - https://en.wikipedia.org/wiki/Collatz_conjecture

he conjecture is named after Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Divisors

Find all divisors of number 493. How many are them? - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started? - Divisors

The sum of all divisors unknown odd number is 2112. Determine sum of all divisors of number which is twice of unknown numbers. - Numbers

Write smallest three-digit number, which in division 5 and 7 gives the rest 2. - Three-digit

How many three-digit natural numbers do not have the number 7? - Basket of fruit

In six baskets, the seller has fruit. In individual baskets, there are only apples or just pears with the following number of fruits: 5,6,12,14,23 and 29. "If I sell this basket," the salesman thinks, "then I will have just as many apples as a pear." Which - The dice

What is the probability of events that if we throw a dice is rolled less than 6? - Remainder

A is an arbitrary integer that gives remainder 1 in the division with 6. B is an arbitrary integer that gives remainder 2 the division by. What makes remainder in division by 3 product of numbers A x B ? - Nuts, girl and boys

Milena collected fallen nuts and called a bunch of boys let them share. She took a condition: the first boy takes one nut and tenth of the rest, the second takes 2 nuts and tenth new rest, the third takes 3 nuts and tenth new rest and so on. Thus managed. - Sheep

Shepherd tending the sheep. Tourists asked him how much they have. The shepherd said, "there are fewer than 500. If I them lined up in 4-row 3 remain. If in 5-row 4 remain. If in 6-row 5 remain. But I can form 7-row." How many sheep have herdsman? - Balls

Michal said to Martin: give me one ball and I'll have twice as you. Martin said: give me 4 and we will have equally. How many balls each have? - Hexagon = 8 parts

Divide the regular hexagon into eight equal parts. - Seamstress 2

Seamstress bought two kinds of textile in whole meters. One at 50 SKK and the second 70 SKK per meter. How many meter bought from this two textiles when paid totally 1540 SKK? - Repair company

The company repairs cars. The first day repair half of the contract second day, the half of the rest and third day 8 residue cars. How many total cars company repaired? - Divisibility

Write all the integers x divisible by seven and eight at the same time for which the following applies: 100 - Children

Less than 20 children is played various games on the yard. They can create a pairs, triso and quartets. How many children were in the yard when Annie came to them? - Candies

If Alena give Lenka 3 candy will still have 1 more candy. If Lenka give Alena 1 candy Alena will hame twice more than Lenka. How many candies have each of them?