# Practice

How many ways can you place 20 pupils in a row when starting on practice?

Result

n =  2.43290200818E+18

#### Solution: Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...): Be the first to comment! #### To solve this example are needed these knowledge from mathematics:

See also our variations calculator. Would you like to compute count of combinations?

## Next similar examples:

1. Friends in cinema 5 friends went to the cinema. How many possible ways can sit in a row, if one of them wants to sit in the middle and the remaining's place does not matter?
2. Football league In the 5th football league is 10 teams. How many ways can be filled first, second and third place?
3. Elections In elections candidate 10 political parties. Calculate how many possible ways can the elections finish, if any two parties will not get the same number of votes.
4. Guests How many ways can 5 guests sit down on 6 seats standing in a row?
5. Metals In the Hockey World Cup play eight teams, determine how many ways can they win gold, silver and bronze medals.
6. Medals In how many ways can be divided gold, silver and bronze medal among 21 contestant?
7. Olympics metals In how many ways can be win six athletes medal positions in the Olympics? Metal color matters.
8. Kids How many different ways can sit 8 boys and 3 girls in line, if girls want to sit on the edge?
9. Lock Combination lock will open when the right choice of 5 numbers (from 1 to 12 inclusive) is selected. A. How many different lock combinations are possible? B. Is he combination lock named appropriately?
10. Football league In the football league is 16 teams. How many different sequence of results may occur at the end of the competition?
11. Cars plates How many different licence plates can country have, given that they use 3 letters followed by 3 digits?
12. PIN - codes How many five-digit PIN - code can we create using the even numbers?
13. Words How many 3 letter "words" are possible using 14 letters of the alphabet? a) n - without repetition b) m - with repetition
14. Variations Determine the number of items when the count of variations of fourth class without repeating is 42 times larger than the count of variations of third class without repetition.
15. Task of the year Determine the number of integers from 1 to 106 with ending four digits 2006.
16. A three-digit numbers Determine the total number of positive three-digit numbers that contain a digit 6.
17. Theorem prove We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?