Ratio of sides

Calculate the area of a circle that has the same circumference as the circumference of the rectangle inscribed with a circle with a radius of r 9 cm so that its sides are in ratio 2 to 7.

Correct result:

S =  157.617 cm2

Solution:

r=9 cm r2=(a/2)2+(b/2)2 a:b=2:7  r2=(a/2)2+((7/2 a)/2)2 r2=a2/4+a2 (7/4)2  a=r/(1/4+(7/4)2)=9/(1/4+(7/4)2)4.945 cm  b=7/2 a=7/2 4.94517.3074 cm  o=2 (a+b)=2 (4.945+17.3074)44.5048 cm  o=2π r1  r1=o/(2π)=44.5048/(2 3.1416)7.0832 cm   S=π r12=3.1416 7.08322=157.617 cm2r=9 \ \text{cm} \ \\ r^2=(a/2)^2 + (b/2)^2 \ \\ a:b=2:7 \ \\ \ \\ r^2=(a/2)^2 + ((7/2 \cdot \ a)/2)^2 \ \\ r^2=a^2/4 + a^2 \cdot \ (7/4)^2 \ \\ \ \\ a=r / (\sqrt{ 1/4+(7/4)^2 })=9 / (\sqrt{ 1/4+(7/4)^2 }) \doteq 4.945 \ \text{cm} \ \\ \ \\ b=7/2 \cdot \ a=7/2 \cdot \ 4.945 \doteq 17.3074 \ \text{cm} \ \\ \ \\ o=2 \cdot \ (a+b)=2 \cdot \ (4.945+17.3074) \doteq 44.5048 \ \text{cm} \ \\ \ \\ o=2 \pi \cdot \ r_{1} \ \\ \ \\ r_{1}=o / (2 \pi)=44.5048 / (2 \cdot \ 3.1416) \doteq 7.0832 \ \text{cm} \ \\ \ \\ \ \\ S=\pi \cdot \ r_{1}^2=3.1416 \cdot \ 7.0832^2=157.617 \ \text{cm}^2



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Please write to us with your comment on the math problem or ask something. Thank you for helping each other - students, teachers, parents, and problem authors.

Showing 0 comments:
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Check out our ratio calculator.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Chimney and tree
    shadow Calculate the height of the factory chimney, which casts a shadow 6.5 m long in the afternoon. At the same time, a 6 m high tree standing near it casts a shadow 25 dm long.
  • Powerplant chimney
    komin2 From the window of the building at a height of 7.5 m, the top of the factory chimney can be seen at an altitude angle of 76° 30 ′. The base of the chimney can be seen from the same place at a depth angle of 5° 50 ′. How tall is the chimney?
  • Hexagonal pyramid
    hexa_pyramid Calculate the volume and surface area of a regular hexagonal pyramid with a base edge a = 30 m and a side edge b = 50 m.
  • Quadrilateral pyramid
    jehlan3 In a regular quadrilateral pyramid, the height is 6.5 cm and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body. Round calculations to 1 decimal place.
  • Quadrilateral oblique prism
    kosyHranol What is the volume of a quadrilateral oblique prism with base edges of length a = 1m, b = 1.1m, c = 1.2m, d = 0.7m, if a side edge of length h = 3.9m has a deviation from the base of 20° 35 ´ and the edges a, b form an angle of 50.5°.
  • Hexagonal pyramid
    hexa_pyramid Find the volume of a regular hexagonal pyramid, the base edge of which is 12 cm long and the side edge 20 cm.
  • Quadrilateral pyramid
    jehlan_2 A regular quadrilateral pyramid has a volume of 24 dm3 and a base edge a = 4 dm. Calculate: a/height of the pyramid b/sidewall height c/surface of the pyramid
  • Integer sides
    rt_triangle_1 A right triangle with an integer length of two sides has one leg √11 long. How much is its longest side?
  • The regular
    hranol3b The regular triangular prism has a base in the shape of an isosceles triangle with a base of 86 mm and 6.4 cm arms, the height of the prism is 24 cm. Calculate its volume.
  • Hexagonal pyramid
    hexa_pyramid Find the area of a shell of the regular hexagonal pyramid, if you know that its base edge is 5 cm long and the height of this pyramid is 10 cm.
  • Find the 13
    circle_inside_rhombus Find the equation of the circle inscribed in the rhombus ABCD where A[1, -2], B[8, -3] and C[9, 4].
  • Perimeter and diagonal
    diagonal_rectangle The perimeter of the rectangle is 82 m, the length of its diagonal is 29 m. Find the dimensions of the rectangle.
  • Diagonal BD
    trapezium_right Find the length of the diagonal BD in a rectangular trapezoid ABCD with a right angle at vertex A when/AD / = 8,1 cm and the angle DBA is 42°
  • Distance of points
    jehlan_4b_obdelnik_1 A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S.
  • Inclined plane
    naklonena_rovina The body stays on an inclined plane and exerts a compressive force of 70N on it. Find the angle between the inclined plane and the horizontal if a gravitational force of 100N acts on the body.
  • Parallelogram
    rovnobeznik_1 Find the perimeter of the parallelogram, where base a = 8 cm, height v = 3 cm, and angle alpha = 35° is the magnitude of the angle at vertex A.
  • Sailboat
    Plachetnice The 20 m long sailboat has an 8 m high mast in the middle of the deck. The top of the mast is fixed to the bow and stern with a steel cable. Determine how much cable is needed to secure the mast and what angle the cable will make with the ship's deck.