# Volume - examples - page 6

- Weight of air

What is the weight of air in the living room measuring width 5 m length 2 m and height 2.8 m? Air density is ρ = 1.2 kg/m^{3}. - Shots

5500 lead shots with diameter 4 mm is decanted into a ball. What is it diameter? - Triangular prism

Base of perpendicular triangular prism is a right triangle with leg length 5 cm. Content area of the largest side wall of its surface is 130 cm² and the height of the body is 10 cm. Calculate its volume. - Triangular prism

Calculate the surface area and volume of a triangular prism, base right triangle if a = 3 cm, b = 4 cm, c = 5 cm and height of prism h=12 cm. - Water container

Container with water weighs 1.48 kg. When we cast 75% of water container of water weight 0.73 kg. How heavy is an empty container? - Children pool

The bottom of the children's pool is a regular hexagon with a = 60 cm side. The distance of opposing sides is 104 cm, the height of the pool is 45 cm. A) How many liters of water can fit into the pool? B) The pool is made of a double layer of plastic film. - Tetrahedral prism

Calculate surface and volume tetrahedral prism, which has a rhomboid-shaped base, and its dimensions are: a = 12 cm, b = 7 cm, ha = 6 cm and prism height h = 10 cm. - Icerink

Rectangular rink with dimensions of 68.7 m and 561 dm must be covered with a layer of ice 4.2 cm thick. How many liters of water is necessary for the formation of ice when the volume of ice is 9.7% greater than the volume of water. - Rhombus base

Calculate the volume and surface area of prisms whose base is a rhombus with diagonals u_{1}= 12 cm and u_{2}= 10 cm. Prism height is twice base edge length. - Snow

Snow fell overnight layer of thickness 19 cm. In the morning I had to clear a path 69 m long and one meter wide. How many cubic meters of snow I clear? How many kilos was it? (1 m^{3}fresh snow weighs 350 kg) - Iron sphere

Iron sphere has weight 100 kg and density ρ = 7600 kg/m^{3}. Calculate the volume, surface and diameter of the sphere. - Pine wood

From a trunk of pine 6m long and 35 cm in diameter with a carved beam with a cross-section in the shape of a square so that the square had the greatest content area. Calculate the length of the sides of a square. Calculate the volume in cubic meters of lum - Equilateral cylinder

Equilateral cylinder (height = base diameter; h = 2r) has a volume of V = 199 cm^{3}. Calculate the surface area of the cylinder. - Cylinder - area

The diameter of the cylinder is one-third the length of the height of the cylinder. Calculate the surface of cylinder if its volume is 2 m^{3}. - Truncated pyramid

How many cubic meters is volume of a regular four-side truncated pyramid with edges one meter and 60 cm and high 250 mm? - Horizontal Cylindrical Segment

How much fuel is in the tank of horizontal cylindrical segment with a length 10m, width of level 1 meter and level is 0.2 meters below the upper side of the tank? - Vintner

How high can vintner fill keg with crushed red grapes if these grapes occupy a volume of 20 percent? Keg is cylindrical with a diameter of the base 1 m and a volume 9.42 hl. Start from the premise that says that fermentation will fill the keg (the number. - Pharmacy

At the pharmacy are in one container 20% solution in the second 50% solution of disinfectant. They need to prepare 4 L of 48-percent solution. What amount of solution from each container is needed to mix? - Volume from surface area

What is the volume of the cube whose surface area is 96 cm^{2}? - Triangular pyramid

It is given perpendicular regular triangular pyramid: base side a = 5 cm, height v = 8 cm, volume V = 28.8 cm^{3}. What is it content (surface area)?

Do you have an interesting mathematical example that you can't solve it? Enter it, and we can try to solve it.

Tip: Our volume units converter will help you with converion of volume units. See also more information on Wikipedia.