The tourist

The tourist traveled 78km in 3 hours. Part of the journey went on foot at 6km/h, the rest of the trip by bus at 30km/h. How long did he walk?

Result

t1 =  0.5 h

Solution:

s=78 km t=3 h v1=6 km/h v2=30 km/h  s=s1+s2 s=v1 t1+v2 (tt1)   s=v1 t1+v2 (tt1)  78=6 t1+30 (3t1)    24t1=12    t1=12=0.5 =12=0.5  h   t2=tt1=30.5=52=2.5 h s1=v1 t1=6 0.5=3 km s2=v2 t2=30 2.5=75 kms = 78 \ km \ \\ t = 3 \ h \ \\ v_{ 1 } = 6 \ km/h \ \\ v_{ 2 } = 30 \ km/h \ \\ \ \\ s = s_{ 1 }+s_{ 2 } \ \\ s = v_{ 1 } \cdot \ t_{ 1 }+v_{ 2 } \cdot \ (t-t_{ 1 }) \ \\ \ \\ \ \\ s = v_{ 1 } \cdot \ t_{ 1 }+v_{ 2 } \cdot \ (t-t_{ 1 }) \ \\ \ \\ 78 = 6 \cdot \ t_{ 1 }+30 \cdot \ (3-t_{ 1 }) \ \\ \ \\ \ \\ \ \\ 24t_{ 1 } = 12 \ \\ \ \\ \ \\ \ \\ t_{ 1 } = \dfrac{ 1 }{ 2 } = 0.5 \ \\ = \dfrac{ 1 }{ 2 } = 0.5 \ \text { h } \ \\ \ \\ t_{ 2 } = t - t_{ 1 } = 3 - 0.5 = \dfrac{ 5 }{ 2 } = 2.5 \ h \ \\ s_{ 1 } = v_{ 1 } \cdot \ t_{ 1 } = 6 \cdot \ 0.5 = 3 \ km \ \\ s_{ 2 } = v_{ 2 } \cdot \ t_{ 2 } = 30 \cdot \ 2.5 = 75 \ km







Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Following knowledge from mathematics are needed to solve this word math problem:

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you want to convert length units?