Sides of right angled triangle

One leg is 1 m shorter than the hypotenuse, and the second leg is 2 m shorter than the hypotenuse. Find the lengths of all sides of the right-angled triangle.

Result

a =  4 m
b =  3 m
c =  5 m

Solution:

a=c1 b=c2  a2+b2=c2   c26c+5=0  p=1;q=6;r=5 D=q24pr=62415=16 D>0  c1,2=q±D2p=6±162 c1,2=6±42 c1,2=3±2 c1=5 c2=1   Factored form of the equation:  (c5)(c1)=0 c>2 c=c1=5  a=c1=51=4=4  m a = c-1 \ \\ b = c-2 \ \\ \ \\ a^2+b^2 = c^2 \ \\ \ \\ \ \\ c^2 -6c +5 = 0 \ \\ \ \\ p = 1; q = -6; r = 5 \ \\ D = q^2 - 4pr = 6^2 - 4\cdot 1 \cdot 5 = 16 \ \\ D>0 \ \\ \ \\ c_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 6 \pm \sqrt{ 16 } }{ 2 } \ \\ c_{1,2} = \dfrac{ 6 \pm 4 }{ 2 } \ \\ c_{1,2} = 3 \pm 2 \ \\ c_{1} = 5 \ \\ c_{2} = 1 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ (c -5) (c -1) = 0 \ \\ c>2 \ \\ c = c_{ 1 } = 5 \ \\ \ \\ a = c-1 = 5-1 = 4 = 4 \ \text { m }

Checkout calculation with our calculator of quadratic equations.

b=c2=52=3=3  m b = c-2 = 5-2 = 3 = 3 \ \text { m }
c=5=5  m c = 5 = 5 \ \text { m }



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Looking for help with calculating roots of a quadratic equation? Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator.

Next similar math problems:

  1. Garden
    garden_1 Area of a square garden is 6/4 of triangle garden with sides 56 m, 35 m, and 35 m. How many meters of fencing need to fence a square garden?
  2. River
    kongo_river Calculate how many promiles river Dunaj average falls, if on section long 957 km flowing water from 1454 m AMSL to 101 m AMSL.
  3. Trapezoid MO
    right_trapezium The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of ​​the trapezoid.
  4. Trigonometric functions
    trigonom In right triangle is: ? Determine the value of s and c: ? ?
  5. Right Δ
    ruler A right triangle has the length of one leg 11 cm and length of the hypotenuse 61 cm. Calculate the height of the triangle.
  6. Circle chord
    circleChord What is the length d of the chord circle of diameter 51 mm, if the distance from the center circle is 19 mm?
  7. Rectangle
    rectangle_inscribed_circle The rectangle is 21 cm long and 38 cm wide. Determine the radius of the circle circumscribing rectangle.
  8. Axial section
    cone2 Axial section of the cone is an equilateral triangle with area 168 cm2. Calculate the volume of the cone.
  9. Pool
    pool If water flows into the pool by two inlets, fill the whole for 8 hours. The first inlet filled pool 6 hour longer than second. How long pool take to fill with two inlets separately?
  10. Beer
    piva After three 10° beers consumed in a short time, there is 5.6 g of alcohol in 6 kg adult human blood. How much is it per mille?
  11. Troops
    regiment The route is long 147 km and the first-day first regiment went at an average speed of 12 km/h and journey back 21 km/h. The second day went second regiment the same route at an average speed of 22 km/h there and back. Which regiment will take route longe
  12. Bonus
    moeny Gross wage was 527 EUR including 16% bonus. How many EUR were bonuses?
  13. Logic
    blue-barrel A man can drink a barrel of water for 26 days, woman for 48 days. How many days will a barrel last between them?
  14. TV transmitter
    praded The volume of water in the rectangular swimming pool is 6998.4 hectoliters. The promotional leaflet states that if we wanted all the pool water to flow into a regular quadrangle with a base edge equal to the average depth of the pool, the prism would have.
  15. Cube in a sphere
    cube_in_sphere_1 The cube is inscribed in a sphere with volume 7253 cm3. Determine the length of the edges of a cube.
  16. Monkey
    monkey Monkey fell in 38 meters deep well. Every day it climbs 3 meters, at night it dropped back by 2 m. On what day it gets out from the well?
  17. Store
    pave One meter of the textile was discounted by 2 USD. Now 9 m of textile cost as before 8 m. Calculate the old and new price of 1 m of the textile.