# Cross-sections of a cone

Cone with base radius 16 cm and height 11 cm divide by parallel planes to base into three bodies. The planes divide the height of the cone into three equal parts.

Determine the volume ratio of the maximum and minimum of the resulting body.

Correct result:

p =  19

#### Solution:

$r = 16 \ \\ v = 11 \ \\ \ \\ V_1 = \dfrac13 \pi (r/3)^2 (v/3) = 109.219 \ \\ V_2 = \dfrac13 \pi (2r/3)^2 (2v/3) = 873.751 \ \\ V_3 = \dfrac13 \pi (r)^2 v = 2948.908 \ \\ p = \dfrac{ V_3 - V_2 }{ V_1 } = \dfrac{ 2948.908 - 873.751 }{ 109.219 } = 19 \ \\ p = \dfrac{ V_3 - V_2 }{ V_1 } = \ \\ p = \dfrac{ \dfrac13 \pi r^2 v - \dfrac13 \pi (2r/3)^2 (2v/3)}{ \dfrac13 \pi (r/3)^2 (v/3) } \ \\ p = \dfrac{ r^2 v - (2r/3)^2 (2v/3)}{ (r/3)^2 (v/3) } \ \\ p = \dfrac{ r^2 - (2r/3)^2 (2/3)}{ (r/3)^2 \cdot (1/3) } \ \\ p = \dfrac{ 1 - (2/3)^2 (2/3)}{ (1/3)^2 /3 } \ \\ p = \dfrac{ 1 - (2/3)^2 (2/3)}{ (1/3)^2 /3 } \ \\ p = \dfrac{ 19/27 }{ 1/27 } \ \\ p = \dfrac{ 19/27 }{ 1/27 } \ \\ p = 19 = 19:1$

We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!

Tips to related online calculators
Check out our ratio calculator.
Tip: Our volume units converter will help you with the conversion of volume units.

## Next similar math problems:

• The string
They cut 113 cm from the string and divided the rest in a ratio of 5: 6.5: 8: 9.5. The longest part measured 38 cm. Find the original length of the string.
• Mixing paint with water
Mr. Adamek will paint. The purchased paint is diluted with water in a ratio of 1: 1.5. a) how many parts of water will add to 1 part of the paint b) how many liters of water the mission adds to 2 liters of paint
• Equilateral cone
We pour so much water into a container that has the shape of an equilateral cone, the base of which has a radius r = 6 cm, that one-third of the volume of the cone is filled. How high will the water reach if we turn the cone upside down?
• Cuboid edges
Calculate the volume and surface of a cuboid whose edge lengths are in the ratio 2: 3: 4 and the longest edge measures 10cm.
• Cuboid and ratio
Find the dimensions of a cuboid having a volume of 810 cm3 if the lengths of its edges coming from the same vertex are in ratio 2: 3: 5
• Water container
The cube-shaped container is filled to two-thirds of its height. If we pour 18 liters, it will be filled to three-fifths of the height. What is the volume of the whole container?
• Conical bottle
When a conical bottle rests on its flat base, the water in the bottle is 8 cm from it vertex. When the same conical bottle is turned upside down, the water level is 2 cm from its base. What is the height of the bottle?
• Axial section of the cone
The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2: 3. Calculate its volume if you know its area is 314 cm square.
• Cone side
Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side.
• Gasoline-oil ratio
The manufacturer of a scooter engine recommends a gasoline-oil fuel mixture ratio of 15 to 1. In a particular garage, we can buy pure gasoline and a gasoline-oil mixture, 75% gasoline. How much gasoline and gasoline-oil mix do we need to make 8.0 L of fue
• Ratio of volumes
If the heights of two cylindrical drums are in the ratio 7:8 and their base radii are in the ratio 4:3. What is the ratio of their volumes?
• Lateral surface area
The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm.