# Right angled triangle

Hypotenuse of a right triangle is 17 cm long. When we decrease length of legs by 3 cm then decrease its hypotenuse by 4 cm. Determine the size of legs.

Result

a =  15 cm
b =  8 cm

#### Solution:

Try calculation via our triangle calculator.

Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Pythagorean theorem is the base for the right triangle calculator.

## Next similar math problems:

1. Sides of right angled triangle
One leg is 1 m shorter than the hypotenuse, and the second leg is 2 m shorter than the hypotenuse. Find the lengths of all sides of the right-angled triangle.
2. Three parallels
The vertices of an equilateral triangle lie on 3 different parallel lines. The middle line is 5 m and 3 m distant from the end lines. Calculate the height of this triangle.
3. Right triangle eq2
Find the lengths of the sides and the angles in the right triangle. Given area S = 210 and perimeter o = 70.
4. AP RT triangle
The length of the sides of a right triangle form an arithmetic progression, longer leg is 24 cm long. What are the perimeter and area?
5. Diagonal 20
Diagonal pathway for the rectangular town plaza whose length is 20 m longer than the width. if the pathway is 20 m shorter than twice the width. How long should the pathway be?
6. Isosceles trapezoid
Calculate the content of an isosceles trapezoid whose bases are at ratio 5:3, the arm is 6cm long and it is 4cm high.
7. Two chords
Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle.
8. Solid cuboid
A solid cuboid has a volume of 40 cm3. The cuboid has a total surface area of 100 cm squared. One edge of the cuboid has length 2 cm. Find the length of a diagonal of the cuboid. Give your answer correct to 3 sig. Fig.
9. Faces diagonals
If the diagonals of a cuboid are x, y, and z (wall diagonals or three faces) respectively than find the volume of a cuboid. Solve for x=1.2, y=1.7, z=1.45
10. Touch x-axis
Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis.
11. Sphere from tree points
Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a
12. A bridge
A bridge over a river is in the shape of the arc of a circle with each base of the bridge at the river's edge. At the center of the river, the bridge is 10 feet above the water. At 27 feet from the edge of the river, the bridge is 9 feet above the water.
13. Nice prism
Calculate the surface of the cuboid if the sum of its edges is a + b + c = 19 cm and the body diagonal size u = 13 cm.
14. Trapezoid
trapezoid ABCD a = 35 m, b=28 m c = 11 m and d = 14 m. How to calculate its area?
15. Diamond diagonals
Calculate the diamond's diagonal lengths if its content is 156 cm2 and the side length is 13 cm.
16. Rectangle
The rectangle has a perimeter 75 cm. Diagonal length is 32.5 cm. Determine the length of the sides.
17. Body diagonal
The cuboid has a volume of 32 cm3. Its side surface area is double as one of the square bases. What is the length of the body diagonal?