The quadrilateral pyramid

The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area.


V =  10.24 dm3
S =  31.383 dm2


a=24 cm=24/10 dm=2.4 dm b=3.2 dm h=0.4 m=0.4 10 dm=4 dm  S1=a b=2.4 3.2=19225=7.68 dm2  V=13 S1 h=13 7.68 4=25625=10.24 dm3a=24 \ cm=24 / 10 \ dm=2.4 \ dm \ \\ b=3.2 \ \text{dm} \ \\ h=0.4 \ m=0.4 \cdot \ 10 \ dm=4 \ dm \ \\ \ \\ S_{1}=a \cdot \ b=2.4 \cdot \ 3.2=\dfrac{ 192 }{ 25 }=7.68 \ \text{dm}^2 \ \\ \ \\ V=\dfrac{ 1 }{ 3 } \cdot \ S_{1} \cdot \ h=\dfrac{ 1 }{ 3 } \cdot \ 7.68 \cdot \ 4=\dfrac{ 256 }{ 25 }=10.24 \ \text{dm}^3
s2=h2+(a/2)2=42+(2.4/2)24.1761 dm s3=h2+(b/2)2=42+(3.2/2)24.3081 dm  S2=a s32=2.4 4.308125.1698 dm2 S3=b s22=3.2 4.176126.6818 dm2  S=S1+2 S2+2 S3=7.68+2 5.1698+2 6.681831.383131.383 dm2s_{2}=\sqrt{ h^2 + (a/2)^2 }=\sqrt{ 4^2 + (2.4/2)^2 } \doteq 4.1761 \ \text{dm} \ \\ s_{3}=\sqrt{ h^2 + (b/2)^2 }=\sqrt{ 4^2 + (3.2/2)^2 } \doteq 4.3081 \ \text{dm} \ \\ \ \\ S_{2}=\dfrac{ a \cdot \ s_{3} }{ 2 }=\dfrac{ 2.4 \cdot \ 4.3081 }{ 2 } \doteq 5.1698 \ \text{dm}^2 \ \\ S_{3}=\dfrac{ b \cdot \ s_{2} }{ 2 }=\dfrac{ 3.2 \cdot \ 4.1761 }{ 2 } \doteq 6.6818 \ \text{dm}^2 \ \\ \ \\ S=S_{1} + 2 \cdot \ S_{2} + 2 \cdot \ S_{3}=7.68 + 2 \cdot \ 5.1698 + 2 \cdot \ 6.6818 \doteq 31.3831 \doteq 31.383 \ \text{dm}^2

Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!

Tips to related online calculators
Pythagorean theorem is the base for the right triangle calculator.
Do you want to convert length units?
Do you know the volume and unit volume, and want to convert volume units?
See also our trigonometric triangle calculator.

Next similar math problems:

  1. Quadrilateral pyramid
    ihlan_rez In a regular quadrilateral pyramid, the side edge is e = 7 dm and the diagonal of the base is 50 cm. Calculate the pyramid shell area.
  2. Octagonal pyramid
    octagonl_pyramid2 Find the volume of a regular octagonal pyramid with height v = 100 and the angle of the side edge with the plane of the base is α = 60°.
  3. Hexa pyramid
    hexa_pyramid_1 The base of the regular pyramid is a hexagon, which can be described by a circle with a radius of 1 m. Find the volume of the pyramid 2.5 m high.
  4. Tetrahedral pyramid
    ihlan Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´.
  5. Hexagonal pyramid
    hexa_pyramid Calculate the surface area of a regular hexagonal pyramid with a base inscribed in a circle with a radius of 8 cm and a height of 20 cm.
  6. Free space in the garden
    euklid The grandfather's free space in the garden was in the shape of a rectangular triangle with 5 meters and 12 meters in length. He decided to divide it into two parts and the height of the hypotenuse. For the smaller part creates a rock garden, for the large
  7. Triangular prism
    prism3 Calculate the surface of a triangular prism with the base of an equilateral triangle with a side length of 7.5 cm and a corresponding height of 6.5 cm. Prism height is 15cm.
  8. Uboid volume
    cuboid Calculate the cuboid volume if the walls are 30cm², 35cm², 42cm²
  9. Triangular prism,
    prism3s The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
  10. Two bodies
    cylinders The rectangle with dimensions 8 cm and 4 cm is rotated 360º first around the longer side to form the first body. Then, we similarly rotate the rectangle around the shorter side b to form a second body. Determine the ratio of surfaces of the first and seco
  11. Squares above sides
    pataVysky Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm2. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calc
  12. Diagonal intersect
    rrLichobeznik isosceles trapezoid ABCD with length bases | AB | = 6 cm, CD | = 4 cm is divided into 4 triangles by the diagonals intersecting at point S. How much of the area of the trapezoid are ABS and CDS triangles?
  13. Squares ratio
    squares2 The first square has a side length of a = 6 cm. The second square has a circumference of 6 dm. Calculate the proportions of the perimeters and the proportions of the contents of these squares? (Write the ratio in the basic form). (Perimeter = 4 * a, conte
  14. Perimeter of the circle
    squares Calculate the perimeter of the circle in dm, whose radius equals the side of the square containing 0.49 dm2?
  15. Playground
    chess On the special playground, there are 81 square sectors, each with a side of 5 m. How many players can fit on the playground if each player needs a 75 m2 area to play?
  16. Cross five
    5squares2 The figure on the picture is composed of the same squares and has a content of 45cm². What's his perimeter?
  17. Two 2D shapes
    rectangles Decide which shapes have more area:   (a) a square of 8cm side; or   (b) two rectangles with sides 5cm and 15cm? Write result as 1 or 2 (rectangles)