Sick days

In Canada, there are typically 261 working days per year. If there is a 4.9% chance that an employee takes a sick day. ..
what is the probability an employee will use 17 OR MORE sick days in a year?

Result

p =  0.093

Solution:

q=4.9%=4.9100=0.049 n=261  C0(261)=(2610)=261!0!(2610)!=11=1  p0=(2610) q0 (1q)n0=1 0.0490 (10.049)26100 C1(261)=(2611)=261!1!(2611)!=2611=261  p1=(2611) q1 (1q)n1=261 0.0491 (10.049)26110 C2(261)=(2612)=261!2!(2612)!=26126021=33930  p2=(2612) q2 (1q)n2=33930 0.0492 (10.049)26120.0002 C3(261)=(2613)=261!3!(2613)!=261260259321=2929290  p3=(2613) q3 (1q)n3=2929290 0.0493 (10.049)26130.0008 C4(261)=(2614)=261!4!(2614)!=2612602592584321=188939205  p4=(2614) q4 (1q)n4=188939205 0.0494 (10.049)26140.0027 C5(261)=(2615)=261!5!(2615)!=26126025925825754321=9711475137  p5=(2615) q5 (1q)n5=9711475137 0.0495 (10.049)26150.0071 C6(261)=(2616)=261!6!(2616)!=261260259258257256654321=414356272512  p6=(2616) q6 (1q)n6=414356272512 0.0496 (10.049)26160.0157 C7(261)=(2617)=261!7!(2617)!=2612602592582572562557654321=15094407070080  p7=(2617) q7 (1q)n7=15094407070080 0.0497 (10.049)26170.0294 C8(261)=(2618)=261!8!(2618)!=26126025925825725625525487654321=479247424475040  p8=(2618) q8 (1q)n8=479247424475040 0.0498 (10.049)26180.0481 C9(261)=(2619)=261!9!(2619)!=261260259258257256255254253987654321=13472177599131680  p9=(2619) q9 (1q)n9=13472177599131680 0.0499 (10.049)26190.0696 C10(261)=(26110)=261!10!(26110)!=339498875498118336  p10=(26110) q10 (1q)n10=339498875498118336 0.04910 (10.049)261100.0904 C11(261)=(26111)=261!11!(26111)!=7746747068184336576  p11=(26111) q11 (1q)n11=7746747068184336576 0.04911 (10.049)261110.1063 C12(261)=(26112)=261!12!(26112)!1.613×1020=161390563920507012000  p12=(26112) q12 (1q)n12=161390563920507012000 0.04912 (10.049)261120.1141 C13(261)=(26113)=261!13!(26113)!3.091×1021=3091250032015865076000  p13=(26113) q13 (1q)n13=3091250032015865076000 0.04913 (10.049)261130.1126 C14(261)=(26114)=261!14!(26114)!5.475×1022=54759286281423895632000  p14=(26114) q14 (1q)n14=54759286281423895632000 0.04914 (10.049)261140.1028 C15(261)=(26115)=261!15!(26115)!9.017×1023=901702914100780148073600  p15=(26115) q15 (1q)n15=901702914100780148073600 0.04915 (10.049)261150.0872 C16(261)=(26116)=261!16!(26116)!1.386×1025=13863682304299494776631600  p16=(26116) q16 (1q)n16=13863682304299494776631600 0.04916 (10.049)261160.0691 C17(261)=(26117)=261!17!(26117)!1.998×1026=199800127326669189427926000  p17=(26117) q17 (1q)n17=199800127326669189427926000 0.04917 (10.049)261170.0513  s=p0+p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15+p16+p17=0+0+0.0002+0.0008+0.0027+0.0071+0.0157+0.0294+0.0481+0.0696+0.0904+0.1063+0.1141+0.1126+0.1028+0.0872+0.0691+0.05130.9071 p=1s=10.90710.09290.093q=4.9 \%=\dfrac{ 4.9 }{ 100 }=0.049 \ \\ n=261 \ \\ \ \\ C_{{ 0}}(261)=\dbinom{ 261}{ 0}=\dfrac{ 261! }{ 0!(261-0)!}=\dfrac{ 1 } { 1 }=1 \ \\ \ \\ p_{0}={ { 261 } \choose 0 } \cdot \ q^{ 0 } \cdot \ (1-q)^{ n-0 }=1 \cdot \ 0.049^{ 0 } \cdot \ (1-0.049)^{ 261-0 } \doteq 0 \ \\ C_{{ 1}}(261)=\dbinom{ 261}{ 1}=\dfrac{ 261! }{ 1!(261-1)!}=\dfrac{ 261 } { 1 }=261 \ \\ \ \\ p_{1}={ { 261 } \choose 1 } \cdot \ q^{ 1 } \cdot \ (1-q)^{ n-1 }=261 \cdot \ 0.049^{ 1 } \cdot \ (1-0.049)^{ 261-1 } \doteq 0 \ \\ C_{{ 2}}(261)=\dbinom{ 261}{ 2}=\dfrac{ 261! }{ 2!(261-2)!}=\dfrac{ 261 \cdot 260 } { 2 \cdot 1 }=33930 \ \\ \ \\ p_{2}={ { 261 } \choose 2 } \cdot \ q^{ 2 } \cdot \ (1-q)^{ n-2 }=33930 \cdot \ 0.049^{ 2 } \cdot \ (1-0.049)^{ 261-2 } \doteq 0.0002 \ \\ C_{{ 3}}(261)=\dbinom{ 261}{ 3}=\dfrac{ 261! }{ 3!(261-3)!}=\dfrac{ 261 \cdot 260 \cdot 259 } { 3 \cdot 2 \cdot 1 }=2929290 \ \\ \ \\ p_{3}={ { 261 } \choose 3 } \cdot \ q^{ 3 } \cdot \ (1-q)^{ n-3 }=2929290 \cdot \ 0.049^{ 3 } \cdot \ (1-0.049)^{ 261-3 } \doteq 0.0008 \ \\ C_{{ 4}}(261)=\dbinom{ 261}{ 4}=\dfrac{ 261! }{ 4!(261-4)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 } { 4 \cdot 3 \cdot 2 \cdot 1 }=188939205 \ \\ \ \\ p_{4}={ { 261 } \choose 4 } \cdot \ q^{ 4 } \cdot \ (1-q)^{ n-4 }=188939205 \cdot \ 0.049^{ 4 } \cdot \ (1-0.049)^{ 261-4 } \doteq 0.0027 \ \\ C_{{ 5}}(261)=\dbinom{ 261}{ 5}=\dfrac{ 261! }{ 5!(261-5)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 } { 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=9711475137 \ \\ \ \\ p_{5}={ { 261 } \choose 5 } \cdot \ q^{ 5 } \cdot \ (1-q)^{ n-5 }=9711475137 \cdot \ 0.049^{ 5 } \cdot \ (1-0.049)^{ 261-5 } \doteq 0.0071 \ \\ C_{{ 6}}(261)=\dbinom{ 261}{ 6}=\dfrac{ 261! }{ 6!(261-6)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 } { 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=414356272512 \ \\ \ \\ p_{6}={ { 261 } \choose 6 } \cdot \ q^{ 6 } \cdot \ (1-q)^{ n-6 }=414356272512 \cdot \ 0.049^{ 6 } \cdot \ (1-0.049)^{ 261-6 } \doteq 0.0157 \ \\ C_{{ 7}}(261)=\dbinom{ 261}{ 7}=\dfrac{ 261! }{ 7!(261-7)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 } { 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=15094407070080 \ \\ \ \\ p_{7}={ { 261 } \choose 7 } \cdot \ q^{ 7 } \cdot \ (1-q)^{ n-7 }=15094407070080 \cdot \ 0.049^{ 7 } \cdot \ (1-0.049)^{ 261-7 } \doteq 0.0294 \ \\ C_{{ 8}}(261)=\dbinom{ 261}{ 8}=\dfrac{ 261! }{ 8!(261-8)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 \cdot 254 } { 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=479247424475040 \ \\ \ \\ p_{8}={ { 261 } \choose 8 } \cdot \ q^{ 8 } \cdot \ (1-q)^{ n-8 }=479247424475040 \cdot \ 0.049^{ 8 } \cdot \ (1-0.049)^{ 261-8 } \doteq 0.0481 \ \\ C_{{ 9}}(261)=\dbinom{ 261}{ 9}=\dfrac{ 261! }{ 9!(261-9)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 \cdot 254 \cdot 253 } { 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=13472177599131680 \ \\ \ \\ p_{9}={ { 261 } \choose 9 } \cdot \ q^{ 9 } \cdot \ (1-q)^{ n-9 }=13472177599131680 \cdot \ 0.049^{ 9 } \cdot \ (1-0.049)^{ 261-9 } \doteq 0.0696 \ \\ C_{{ 10}}(261)=\dbinom{ 261}{ 10}=\dfrac{ 261! }{ 10!(261-10)!}=339498875498118336 \ \\ \ \\ p_{10}={ { 261 } \choose 10 } \cdot \ q^{ 10 } \cdot \ (1-q)^{ n-10 }=339498875498118336 \cdot \ 0.049^{ 10 } \cdot \ (1-0.049)^{ 261-10 } \doteq 0.0904 \ \\ C_{{ 11}}(261)=\dbinom{ 261}{ 11}=\dfrac{ 261! }{ 11!(261-11)!}=7746747068184336576 \ \\ \ \\ p_{11}={ { 261 } \choose 11 } \cdot \ q^{ 11 } \cdot \ (1-q)^{ n-11 }=7746747068184336576 \cdot \ 0.049^{ 11 } \cdot \ (1-0.049)^{ 261-11 } \doteq 0.1063 \ \\ C_{{ 12}}(261)=\dbinom{ 261}{ 12}=\dfrac{ 261! }{ 12!(261-12)!} \approx 1.613\times 10^{ 20 }=161390563920507012000 \ \\ \ \\ p_{12}={ { 261 } \choose 12 } \cdot \ q^{ 12 } \cdot \ (1-q)^{ n-12 }=161390563920507012000 \cdot \ 0.049^{ 12 } \cdot \ (1-0.049)^{ 261-12 } \doteq 0.1141 \ \\ C_{{ 13}}(261)=\dbinom{ 261}{ 13}=\dfrac{ 261! }{ 13!(261-13)!} \approx 3.091\times 10^{ 21 }=3091250032015865076000 \ \\ \ \\ p_{13}={ { 261 } \choose 13 } \cdot \ q^{ 13 } \cdot \ (1-q)^{ n-13 }=3091250032015865076000 \cdot \ 0.049^{ 13 } \cdot \ (1-0.049)^{ 261-13 } \doteq 0.1126 \ \\ C_{{ 14}}(261)=\dbinom{ 261}{ 14}=\dfrac{ 261! }{ 14!(261-14)!} \approx 5.475\times 10^{ 22 }=54759286281423895632000 \ \\ \ \\ p_{14}={ { 261 } \choose 14 } \cdot \ q^{ 14 } \cdot \ (1-q)^{ n-14 }=54759286281423895632000 \cdot \ 0.049^{ 14 } \cdot \ (1-0.049)^{ 261-14 } \doteq 0.1028 \ \\ C_{{ 15}}(261)=\dbinom{ 261}{ 15}=\dfrac{ 261! }{ 15!(261-15)!} \approx 9.017\times 10^{ 23 }=901702914100780148073600 \ \\ \ \\ p_{15}={ { 261 } \choose 15 } \cdot \ q^{ 15 } \cdot \ (1-q)^{ n-15 }=901702914100780148073600 \cdot \ 0.049^{ 15 } \cdot \ (1-0.049)^{ 261-15 } \doteq 0.0872 \ \\ C_{{ 16}}(261)=\dbinom{ 261}{ 16}=\dfrac{ 261! }{ 16!(261-16)!} \approx 1.386\times 10^{ 25 }=13863682304299494776631600 \ \\ \ \\ p_{16}={ { 261 } \choose 16 } \cdot \ q^{ 16 } \cdot \ (1-q)^{ n-16 }=13863682304299494776631600 \cdot \ 0.049^{ 16 } \cdot \ (1-0.049)^{ 261-16 } \doteq 0.0691 \ \\ C_{{ 17}}(261)=\dbinom{ 261}{ 17}=\dfrac{ 261! }{ 17!(261-17)!} \approx 1.998\times 10^{ 26 }=199800127326669189427926000 \ \\ \ \\ p_{17}={ { 261 } \choose 17 } \cdot \ q^{ 17 } \cdot \ (1-q)^{ n-17 }=199800127326669189427926000 \cdot \ 0.049^{ 17 } \cdot \ (1-0.049)^{ 261-17 } \doteq 0.0513 \ \\ \ \\ s=p_{0}+ p_{1}+ p_{2}+ p_{3}+ p_{4}+ p_{5}+ p_{6}+ p_{7}+ p_{8}+ p_{9}+ p_{10}+ p_{11}+ p_{12}+ p_{13}+ p_{14}+ p_{15}+ p_{16}+ p_{17}=0+ 0+ 0.0002+ 0.0008+ 0.0027+ 0.0071+ 0.0157+ 0.0294+ 0.0481+ 0.0696+ 0.0904+ 0.1063+ 0.1141+ 0.1126+ 0.1028+ 0.0872+ 0.0691+ 0.0513 \doteq 0.9071 \ \\ p=1-s=1-0.9071 \doteq 0.0929 \doteq 0.093



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for a statistical calculator?
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
Would you like to compute count of combinations?

Next similar math problems:

  1. Aircraft angines
    aircraft-02 The two engines of the aircraft are enough to supply the fuel for five hours of operation. However, one of the engines has a malfunction and thus consumes one-third more fuel. How long can the plane be in the air before it runs out of fuel? After an hour
  2. Fog
    fog The car started in fog at speed 30 km/h. After a 12-minute drive, the fog dissipated and the driver drove next 12 minutes distance 17 km. On the last 17 km long again the driving conditions deteriorated and the driver drove the speed of 51 km/h. a) Calcu
  3. Water current
    river John swims upstream. After a while, he passes the bottle, from that moment he floats for 20 minutes in the same direction. He then turns around and swims back, and from the first meeting with the bottle, he sails 2 kilometers before he reaches the bottle.
  4. Between two bus stops
    bus27 Wanda lives between two bus stops at three-eighths of their distance. He started the house today and found that whether he was running to one or the other stop, he would have arrived at the bus stop. The average bus speed is 60 km/h. What is the average
  5. Filament of bulb
    bulb _1 The filament of bulb has a 1 ohm resistivity and is connected to a voltage 220 V. How much electric charge will pass through the fiber when the electric current passes for 10 seconds?
  6. Cheetah vs antelope
    motion2 When the cheetah began chasing the antelope, the distance between them was 120 meters. Although the antelope was running at 72km/h, the cheetah caught up with it in 12 seconds. What speed was the cheetah running?
  7. Transformer
    trafo Solve the textbook problems - transformer: a) N1 = 40, N2 = 80, U2 = 80 V, U1 =? b) N1 = 400, U1 = 200 V, U2 = 50 V, N2 =?
  8. Coil as a girl
    tlmivka_TL1.JPG The electrical resistance of the copper wire coil is 2.0 ohms. What current runs through the coil when the voltage between the terminals is 3.0 V?
  9. Resistance of the resistor
    Elektrárna_1 The resistor terminals have a voltage of 20 V and a current of 5 mA is passed through. What is the resistance of the resistor?
  10. Resistance
    bulb_1 Determine the resistance of the bulb with current 200 mA and is in regular lamp (230V).
  11. Cyclists and walkers
    time_1 A group of tourists started at 8:00 at speed 4 km/h walk. At half-past ten, another group started on a bike and caught up with a group of tourists at 10:50. What was the average speed of cyclists?
  12. Where and when
    cars The truck left Kremnica at 11:00 h at a speed of 60km/h. At 12:30 h, the passenger car started at an average speed of 80km/h. How many kilometers from Kremnica will the passenger car reach truck, and when?
  13. Voltmeter range
    predradnik We have a voltmeter which in the original set measures voltage to 10V. Calculate the size of the ballast resistor for this voltmeter, if we want to measure the voltage up to 50V. Voltmeter's internal resistance is 2 kiloohm/Volt.
  14. The tourist
    tourist The tourist traveled 78km in 3 hours. Part of the journey went on foot at 6km/h, the rest of the trip by bus at 30km/h. How long did he walk?
  15. Car loop
    preteky The toy car runs at an average speed of 2 m/s. In a minute, it will pass the entire circuit five times. How long is the loop?
  16. RPM
    motor_rpm An electric motor makes 3,000 revolutions per minutes. How many degrees does it rotate in one second?
  17. Gravitation
    vodorovny_vrh From the top of the 80m high tower, the body is thrown horizontally with an initial speed of 15 m/s. At what time and at what distance from the foot of the tower does the body hit the horizontal surface of the Earth? (use g = 10 ms-2)