Hexagonal pyramid

Calculate the surface area of a regular hexagonal pyramid with a base inscribed in a circle with a radius of 8 cm and a height of 20 cm.

Result

S =  674.261 cm2

Solution:

r=8 cm a=r=8 cm h=20 cm S1=3 3/2 a2=3 3/2 8296 3 cm2166.2769 cm2  a2=3/2 a=3/2 84 3 cm6.9282 cm h2=a22+h2=6.92822+2028 7 cm21.166 cm  S2=a h2/2=8 21.166/232 7 cm284.664 cm2  S=S1+6 S2=166.2769+6 84.664674.2611674.261 cm2r=8 \ \text{cm} \ \\ a=r=8 \ \text{cm} \ \\ h=20 \ \text{cm} \ \\ S_{1}=3 \cdot \ \sqrt{ 3 }/2 \cdot \ a^2=3 \cdot \ \sqrt{ 3 }/2 \cdot \ 8^2 \doteq 96 \ \sqrt{ 3 } \ \text{cm}^2 \doteq 166.2769 \ \text{cm}^2 \ \\ \ \\ a_{2}=\sqrt{ 3 }/2 \cdot \ a=\sqrt{ 3 }/2 \cdot \ 8 \doteq 4 \ \sqrt{ 3 } \ \text{cm} \doteq 6.9282 \ \text{cm} \ \\ h_{2}=\sqrt{ a_{2}^2+h^2 }=\sqrt{ 6.9282^2+20^2 } \doteq 8 \ \sqrt{ 7 } \ \text{cm} \doteq 21.166 \ \text{cm} \ \\ \ \\ S_{2}=a \cdot \ h_{2}/2=8 \cdot \ 21.166/2 \doteq 32 \ \sqrt{ 7 } \ \text{cm}^2 \doteq 84.664 \ \text{cm}^2 \ \\ \ \\ S=S_{1}+6 \cdot \ S_{2}=166.2769+6 \cdot \ 84.664 \doteq 674.2611 \doteq 674.261 \ \text{cm}^2



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

Next similar math problems:

  1. Quadrilateral pyramid
    ihlan_rez In a regular quadrilateral pyramid, the side edge is e = 7 dm and the diagonal of the base is 50 cm. Calculate the pyramid shell area.
  2. The quadrilateral pyramid
    jehlan_4b_obdelnik The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area.
  3. Hexa pyramid
    hexa_pyramid_1 The base of the regular pyramid is a hexagon, which can be described by a circle with a radius of 1 m. Find the volume of the pyramid 2.5 m high.
  4. Tetrahedral pyramid
    ihlan Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´.
  5. Octagonal pyramid
    octagonl_pyramid2 Find the volume of a regular octagonal pyramid with height v = 100 and the angle of the side edge with the plane of the base is α = 60°.
  6. Triangular prism
    prism3 Calculate the surface of a triangular prism with the base of an equilateral triangle with a side length of 7.5 cm and a corresponding height of 6.5 cm. Prism height is 15cm.
  7. Squares ratio
    squares2 The first square has a side length of a = 6 cm. The second square has a circumference of 6 dm. Calculate the proportions of the perimeters and the proportions of the contents of these squares? (Write the ratio in the basic form). (Perimeter = 4 * a, conte
  8. Squares above sides
    pataVysky Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm2. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calc
  9. Perimeter of the circle
    squares Calculate the perimeter of the circle in dm, whose radius equals the side of the square containing 0.49 dm2?
  10. Uboid volume
    cuboid Calculate the cuboid volume if the walls are 30cm², 35cm², 42cm²
  11. Triangular prism,
    prism3s The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
  12. Two bodies
    cylinders The rectangle with dimensions 8 cm and 4 cm is rotated 360º first around the longer side to form the first body. Then, we similarly rotate the rectangle around the shorter side b to form a second body. Determine the ratio of surfaces of the first and seco
  13. Diagonal intersect
    rrLichobeznik isosceles trapezoid ABCD with length bases | AB | = 6 cm, CD | = 4 cm is divided into 4 triangles by the diagonals intersecting at point S. How much of the area of the trapezoid are ABS and CDS triangles?
  14. Free space in the garden
    euklid The grandfather's free space in the garden was in the shape of a rectangular triangle with 5 meters and 12 meters in length. He decided to divide it into two parts and the height of the hypotenuse. For the smaller part creates a rock garden, for the large
  15. Playground
    chess On the special playground, there are 81 square sectors, each with a side of 5 m. How many players can fit on the playground if each player needs a 75 m2 area to play?
  16. Two 2D shapes
    rectangles Decide which shapes have more area:   (a) a square of 8cm side; or   (b) two rectangles with sides 5cm and 15cm? Write result as 1 or 2 (rectangles)
  17. Cross five
    5squares2 The figure on the picture is composed of the same squares and has a content of 45cm². What's his perimeter?