The bus stop

The bus stop waiting room has the shape of a regular quadrilateral pyramid 4 m high with a 5 m base edge. Calculate how many m2 roofing is required to cover the three walls of the sheathing, taking into account 40% of the additional coverage.

Result

S =  49.528 m2

Solution:

$h=4 \ \text{m} \ \\ a=5 \ \text{m} \ \\ q=40 \%=1 + \dfrac{ 40 }{ 100 }=1.4 \ \\ \ \\ w^2=h^2+(a/2)^2 \ \\ w=\sqrt{ h^2+(a/2)^2 }=\sqrt{ 4^2+(5/2)^2 } \doteq 4.717 \ \text{m} \ \\ S_{1}=\dfrac{ a \cdot \ w }{ 2 }=\dfrac{ 5 \cdot \ 4.717 }{ 2 } \doteq 11.7925 \ \text{m}^2 \ \\ \ \\ S=3 \cdot \ q \cdot \ S_{1}=3 \cdot \ 1.4 \cdot \ 11.7925 \doteq 49.5284 \doteq 49.528 \ \text{m}^2$

Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

Tips to related online calculators
Pythagorean theorem is the base for the right triangle calculator.

Next similar math problems:

1. Top of the tower
The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint
2. Hexagonal pyramid
Calculate the surface area of a regular hexagonal pyramid with a base inscribed in a circle with a radius of 8 cm and a height of 20 cm.
3. Triangular prism,
The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area.
5. Free space in the garden
The grandfather's free space in the garden was in the shape of a rectangular triangle with 5 meters and 12 meters in length. He decided to divide it into two parts and the height of the hypotenuse. For the smaller part creates a rock garden, for the large
6. Squares above sides
Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm2. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calc
7. Wall height
Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height w = 20 cm.
8. Triangular pyramid
A regular tetrahedron is a triangular pyramid whose base and walls are identical equilateral triangles. Calculate the height of this body if the edge length is a = 8 cm
9. Five-gon
Calculate the side a, the circumference and the area of the regular 5-angle if Rop = 6cm.
10. Rectangular base pyramid
Calculate an area of the shell of the pyramid with a rectangular base of 2.8 m and 1.4 m and height 2.5 meters.
11. What percentage
What percentage of the Earth’s surface is seen by an astronaut from a height of h = 350 km. Take the Earth as a sphere with the radius R = 6370 km
12. Storm and roof
The roof on the building is a cone with a height of 3 meters and a radius equal to half the height of the roof. How many m2 of roof need to be repaired if 20% were damaged in a storm?
13. Angle of the body diagonals
Using vector dot product calculate the angle of the body diagonals of the cube.
14. Three faces of a cuboid
The diagonal of three faces of a cuboid are 13,√281 and 20 units. Then the total surface area of the cuboid is.
15. Suppose
Suppose you know that the length of a line segment is 15, x2=6, y2=14 and x1= -3. Find the possible value of y1. Is there more than one possible answer? Why or why not?
16. A cell tower
A cell tower is located at coordinates (-5, -7) and has a circular range of 12 units. If Mr. XYZ is located at coordinates (4,5), will he be able to get a signal?
17. Two chords
In a circle with radius r = 26 cm two parallel chords are drawn. One chord has a length t1 = 48 cm and the second has a length t2 = 20 cm, with the center lying between them. Calculate the distance of two chords.