Triangle ABC

Triangle ABC has side lengths m-1, m-2, m-3. What has to be m to be triangle

a) rectangular
b) acute-angled?

Result

m(a) =  6
m(b) =  7

Solution:

(m1)2=(m2)2+(m3)2;m>3 m22m+1=m24m+4+m26m+9 m28m+12=0  m1,2=b±D2a=8±162 m1,2=8±42 m1,2=4±2 m1=6 m2=2  m>3 m(a)=6 (m-1)^2 = (m-2)^2 +(m-3)^2; m>3 \ \\ m^2-2m+1 = m^2-4m+4+m^2-6m+9 \ \\ m^2-8m+12 = 0 \ \\ \ \\ m_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ 8 \pm \sqrt{ 16 } }{ 2 } \ \\ m_{1,2} = \dfrac{ 8 \pm 4 }{ 2 } \ \\ m_{1,2} = 4 \pm 2 \ \\ m_{1} = 6 \ \\ m_{2} = 2 \ \\ \ \\ m>3 \ \\ m(a) = 6 \ \\

Checkout calculation with our calculator of quadratic equations.

b) m>6b) \ m>6



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Pythagorean theorem is the base for the right triangle calculator.
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.

 

 

 

Next similar math problems:

  1. Inner angles
    triangle_1111 The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.
  2. Calculate 2
    t_sss Calculate the largest angle of the triangle whose side are 5.2cm, 3.6cm, and 2.1cm
  3. A rhombus
    rhombus-diagonals2 A rhombus has sides of length 10 cm, and the angle between two adjacent sides is 76 degrees. Find the length of the longer diagonal of the rhombus.
  4. Children playground
    lich_5 The playground has the shape of a trapezoid, the parallel sides have a length of 36 m and 21 m, the remaining two sides are 14 m long and 16 m long. Determine the size of the inner trapezoid angles.
  5. Two groves
    hajovna Two groves A, B are separated by a forest, both are visible from the hunting grove C, which is connected to both by direct roads. What will be the length of the projected road from A to B, if AC = 5004 m, BC = 2600 m and angle ABC = 53° 45 ’?
  6. Largest angle of the triangle
    obtuse_triangle Calculate the largest angle of the triangle whose sides have the sizes: 2a, 3/2a, 3a
  7. Medians of isosceles triangle
    iso1 The isosceles triangle has a base ABC |AB| = 16 cm and 10 cm long arm. What are the length of medians?
  8. Four sides of trapezoid
    lichobeznik-stredni_pricka_3 In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles.
  9. The pond
    rybnik_3 We can see the pond at an angle 65°37'. Its end points are 155 m and 177 m away from the observer. What is the width of the pond?
  10. ABCD
    trig_1 AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD
  11. Viewing angle
    zorny The observer sees a straight fence 60 m long at a viewing angle of 30°. It is 102 m away from one end of the enclosure. How far is the observer from the other end of the enclosure?
  12. Triangle from median
    triangles_1 Calculate the perimeter, content, and magnitudes of the remaining angles of triangle ABC, given: a = 8.4; β = 105° 35 '; and median ta = 12.5.
  13. The spacecraft
    Sputnik_670 The spacecraft spotted a radar device at altitude angle alpha = 34 degrees 37 minutes and had a distance of u = 615km from Earth's observation point. Calculate the distance d of the spacecraft from Earth at the moment of observation. Earth is considered
  14. Circular railway
    described_circle2 The railway is to interconnect in a circular arc the points A, B, and C, whose distances are | AB | = 30 km, AC = 95 km, BC | = 70 km. How long will the track from A to C?
  15. The angle of view
    pole_1 Determine the angle of view at which the observer sees a rod 16 m long when it is 18 m from one end and 27 m from the other.
  16. Angles by cosine law
    357_triangle Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem).
  17. Three vectors
    vectors_sum0 The three forces whose amplitudes are in ratio 9:10:17 act in the plane at one point so that they are in balance. Determine the angles of the each two forces.