Slow saving in banks

How long will it take to save € 9,000 by depositing € 200 at the beginning of each year at 2% interest?

Result

y =  32

Solution:

q=2%=1+2100=1.02 v=200 eur r1=v q=200 1.02=204 eur r2=(r1+v) q=(204+200) 1.02=1030225=412.08 r3=(r2+v) q=(412.08+200) 1.02=624.3216 r4=(r3+v) q=(624.3216+200) 1.02840.808 r5=(r4+v) q=(840.808+200) 1.021061.6242 r6=(r5+v) q=(1061.6242+200) 1.021286.8567 r7=(r6+v) q=(1286.8567+200) 1.021516.5938 r8=(r7+v) q=(1516.5938+200) 1.021750.9257 r9=(r8+v) q=(1750.9257+200) 1.02=1989.9442 r10=(r9+v) q=(1989.9442+200) 1.022233.7431 r11=(r10+v) q=(2233.7431+200) 1.022482.4179 r12=(r11+v) q=(2482.4179+200) 1.022736.0663 r13=(r12+v) q=(2736.0663+200) 1.022994.7876 r14=(r13+v) q=(2994.7876+200) 1.023258.6834 r15=(r14+v) q=(3258.6834+200) 1.023527.8571 r16=(r15+v) q=(3527.8571+200) 1.023802.4142 r17=(r16+v) q=(3802.4142+200) 1.024082.4625 r18=(r17+v) q=(4082.4625+200) 1.024368.1117 r19=(r18+v) q=(4368.1117+200) 1.024659.474 r20=(r19+v) q=(4659.474+200) 1.024956.6634 r21=(r20+v) q=(4956.6634+200) 1.025259.7967 r22=(r21+v) q=(5259.7967+200) 1.025568.9926 r23=(r22+v) q=(5568.9926+200) 1.025884.3725 r24=(r23+v) q=(5884.3725+200) 1.026206.0599 r25=(r24+v) q=(6206.0599+200) 1.026534.1811 r26=(r25+v) q=(6534.1811+200) 1.026868.8648 r27=(r26+v) q=(6868.8648+200) 1.027210.2421 r28=(r27+v) q=(7210.2421+200) 1.027558.4469 r29=(r28+v) q=(7558.4469+200) 1.027913.6158 r30=(r29+v) q=(7913.6158+200) 1.028275.8882 r31=(r30+v) q=(8275.8882+200) 1.028645.4059 r32=(r31+v) q=(8645.4059+200) 1.029022.314 r33=(r32+v) q=(9022.314+200) 1.029406.7603 r34=(r33+v) q=(9406.7603+200) 1.029798.8955 r35=(r34+v) q=(9798.8955+200) 1.0210198.8734   y=32q=2 \%=1 + \dfrac{ 2 }{ 100 }=1.02 \ \\ v=200 \ \text{eur} \ \\ r_{1}=v \cdot \ q=200 \cdot \ 1.02=204 \ \text{eur} \ \\ r_{2}=(r_{1}+v) \cdot \ q=(204+200) \cdot \ 1.02=\dfrac{ 10302 }{ 25 }=412.08 \ \\ r_{3}=(r_{2}+v) \cdot \ q=(412.08+200) \cdot \ 1.02=624.3216 \ \\ r_{4}=(r_{3}+v) \cdot \ q=(624.3216+200) \cdot \ 1.02 \doteq 840.808 \ \\ r_{5}=(r_{4}+v) \cdot \ q=(840.808+200) \cdot \ 1.02 \doteq 1061.6242 \ \\ r_{6}=(r_{5}+v) \cdot \ q=(1061.6242+200) \cdot \ 1.02 \doteq 1286.8567 \ \\ r_{7}=(r_{6}+v) \cdot \ q=(1286.8567+200) \cdot \ 1.02 \doteq 1516.5938 \ \\ r_{8}=(r_{7}+v) \cdot \ q=(1516.5938+200) \cdot \ 1.02 \doteq 1750.9257 \ \\ r_{9}=(r_{8}+v) \cdot \ q=(1750.9257+200) \cdot \ 1.02=1989.9442 \ \\ r_{10}=(r_{9}+v) \cdot \ q=(1989.9442+200) \cdot \ 1.02 \doteq 2233.7431 \ \\ r_{11}=(r_{10}+v) \cdot \ q=(2233.7431+200) \cdot \ 1.02 \doteq 2482.4179 \ \\ r_{12}=(r_{11}+v) \cdot \ q=(2482.4179+200) \cdot \ 1.02 \doteq 2736.0663 \ \\ r_{13}=(r_{12}+v) \cdot \ q=(2736.0663+200) \cdot \ 1.02 \doteq 2994.7876 \ \\ r_{14}=(r_{13}+v) \cdot \ q=(2994.7876+200) \cdot \ 1.02 \doteq 3258.6834 \ \\ r_{15}=(r_{14}+v) \cdot \ q=(3258.6834+200) \cdot \ 1.02 \doteq 3527.8571 \ \\ r_{16}=(r_{15}+v) \cdot \ q=(3527.8571+200) \cdot \ 1.02 \doteq 3802.4142 \ \\ r_{17}=(r_{16}+v) \cdot \ q=(3802.4142+200) \cdot \ 1.02 \doteq 4082.4625 \ \\ r_{18}=(r_{17}+v) \cdot \ q=(4082.4625+200) \cdot \ 1.02 \doteq 4368.1117 \ \\ r_{19}=(r_{18}+v) \cdot \ q=(4368.1117+200) \cdot \ 1.02 \doteq 4659.474 \ \\ r_{20}=(r_{19}+v) \cdot \ q=(4659.474+200) \cdot \ 1.02 \doteq 4956.6634 \ \\ r_{21}=(r_{20}+v) \cdot \ q=(4956.6634+200) \cdot \ 1.02 \doteq 5259.7967 \ \\ r_{22}=(r_{21}+v) \cdot \ q=(5259.7967+200) \cdot \ 1.02 \doteq 5568.9926 \ \\ r_{23}=(r_{22}+v) \cdot \ q=(5568.9926+200) \cdot \ 1.02 \doteq 5884.3725 \ \\ r_{24}=(r_{23}+v) \cdot \ q=(5884.3725+200) \cdot \ 1.02 \doteq 6206.0599 \ \\ r_{25}=(r_{24}+v) \cdot \ q=(6206.0599+200) \cdot \ 1.02 \doteq 6534.1811 \ \\ r_{26}=(r_{25}+v) \cdot \ q=(6534.1811+200) \cdot \ 1.02 \doteq 6868.8648 \ \\ r_{27}=(r_{26}+v) \cdot \ q=(6868.8648+200) \cdot \ 1.02 \doteq 7210.2421 \ \\ r_{28}=(r_{27}+v) \cdot \ q=(7210.2421+200) \cdot \ 1.02 \doteq 7558.4469 \ \\ r_{29}=(r_{28}+v) \cdot \ q=(7558.4469+200) \cdot \ 1.02 \doteq 7913.6158 \ \\ r_{30}=(r_{29}+v) \cdot \ q=(7913.6158+200) \cdot \ 1.02 \doteq 8275.8882 \ \\ r_{31}=(r_{30}+v) \cdot \ q=(8275.8882+200) \cdot \ 1.02 \doteq 8645.4059 \ \\ r_{32}=(r_{31}+v) \cdot \ q=(8645.4059+200) \cdot \ 1.02 \doteq 9022.314 \ \\ r_{33}=(r_{32}+v) \cdot \ q=(9022.314+200) \cdot \ 1.02 \doteq 9406.7603 \ \\ r_{34}=(r_{33}+v) \cdot \ q=(9406.7603+200) \cdot \ 1.02 \doteq 9798.8955 \ \\ r_{35}=(r_{34}+v) \cdot \ q=(9798.8955+200) \cdot \ 1.02 \doteq 10198.8734 \ \\ \ \\ \ \\ y=32



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
Do you want to convert time units like minutes to seconds?

Next similar math problems:

  1. Segments
    segments Line segments 62 cm and 2.2 dm long we divide into equal parts which lengths in centimeters is expressed integer. How many ways can we divide?
  2. An equilateral
    rs_triangle2 An equilateral triangle is inscribed in a square of side 1 unit long so that it has one common vertex with the square. What is the area of the inscribed triangle?
  3. Rectangular triangle
    rt_triangle_2 The lengths of the rectangular triangle sides with a longer leg 12 cm form an arithmetic sequence. What is the area of the triangle?
  4. The Hotel
    hotel-montfort-tatry-2_2 The Holiday Hotel has the same number of rooms on each floor. Rooms are numbered with natural numbers sequentially from the first floor, no number is omitted, and each room has a different number. Three tourists arrived at the hotel. The first one was in
  5. Faces diagonals
    cuboid_1 If the diagonals of a cuboid are x, y, and z (wall diagonals or three faces) respectively than find the volume of a cuboid. Solve for x=1.3, y=1, z=1.2
  6. Two chords
    tetivy Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle.
  7. Geometric progressiob
    eq2 If the sum of four consective terms of geometric progression is 80 and arithmetic mean of second and fourth term is 30 then find terms?
  8. GP - three members
    progression_ao The second and third of a geometric progression are 24 and 12(c+1) respectively, given that the sum of the first three terms of progression is 76 determine value of c
  9. Hyperbola equation
    hyperbola_4 Find the hyperbola equation with the center of S [0; 0], passing through the points: A [5; 3] B [8; -10]
  10. MO Z8-I-1 2018
    age_6 Fero and David meet daily in the elevator. One morning they found that if they multiply their current age, they get 238. If they did the same after four years, this product would be 378. Determine the sum of the current ages of Fero and David.
  11. Right triangle eq2
    rt_triangle_1 Find the lengths of the sides and the angles in the right triangle. Given area S = 210 and perimeter o = 70.
  12. Digit sum
    number_line_3 The digit sum of the two-digit number is nine. When we turn figures and multiply by the original two-digit number, we get the number 2430. What is the original two-digit number?
  13. Cuboid walls
    cuboid_9 Calculate the volume of the cuboid if its different walls have area of 195cm², 135cm² and 117cm².
  14. Sales of products
    cukriky_9 For 80 pieces of two quality products a total sales is 175 Eur. If the first quality product was sold for n EUR per piece (n natural number) and the second quality product after 2 EUR per piece. How many pieces of the first quality were sold?
  15. The gardener
    stromy_3 The gardener bought trees for 960 CZK. If every tree were cheaper by 12 CZK, he would have gotten four more trees for the same money. How many trees did he buy?
  16. Sweets, candy
    bonbons Grandfather gave out sweets to four children. At the last moment, two more children came, so in order to have them all the same, each of the four children would receive four candies less than they would have received if they had not. How much did my grand
  17. Block or cuboid
    cuboid The wall diagonals of the block have sizes of √29cm, √34cm, √13cm. Calculate the surface and volume of the block.