Slow saving in banks

How long will it take to save € 9,000 by depositing € 200 at the beginning of each year at 2% interest?

Result

y =  32

Solution:

q=2%=1+2100=1.02 v=200 eur r1=v q=200 1.02=204 eur r2=(r1+v) q=(204+200) 1.02=1030225=412.08 r3=(r2+v) q=(412.08+200) 1.02=624.3216 r4=(r3+v) q=(624.3216+200) 1.02840.808 r5=(r4+v) q=(840.808+200) 1.021061.6242 r6=(r5+v) q=(1061.6242+200) 1.021286.8567 r7=(r6+v) q=(1286.8567+200) 1.021516.5938 r8=(r7+v) q=(1516.5938+200) 1.021750.9257 r9=(r8+v) q=(1750.9257+200) 1.02=1989.9442 r10=(r9+v) q=(1989.9442+200) 1.022233.7431 r11=(r10+v) q=(2233.7431+200) 1.022482.4179 r12=(r11+v) q=(2482.4179+200) 1.022736.0663 r13=(r12+v) q=(2736.0663+200) 1.022994.7876 r14=(r13+v) q=(2994.7876+200) 1.023258.6834 r15=(r14+v) q=(3258.6834+200) 1.023527.8571 r16=(r15+v) q=(3527.8571+200) 1.023802.4142 r17=(r16+v) q=(3802.4142+200) 1.024082.4625 r18=(r17+v) q=(4082.4625+200) 1.024368.1117 r19=(r18+v) q=(4368.1117+200) 1.024659.474 r20=(r19+v) q=(4659.474+200) 1.024956.6634 r21=(r20+v) q=(4956.6634+200) 1.025259.7967 r22=(r21+v) q=(5259.7967+200) 1.025568.9926 r23=(r22+v) q=(5568.9926+200) 1.025884.3725 r24=(r23+v) q=(5884.3725+200) 1.026206.0599 r25=(r24+v) q=(6206.0599+200) 1.026534.1811 r26=(r25+v) q=(6534.1811+200) 1.026868.8648 r27=(r26+v) q=(6868.8648+200) 1.027210.2421 r28=(r27+v) q=(7210.2421+200) 1.027558.4469 r29=(r28+v) q=(7558.4469+200) 1.027913.6158 r30=(r29+v) q=(7913.6158+200) 1.028275.8882 r31=(r30+v) q=(8275.8882+200) 1.028645.4059 r32=(r31+v) q=(8645.4059+200) 1.029022.314 r33=(r32+v) q=(9022.314+200) 1.029406.7603 r34=(r33+v) q=(9406.7603+200) 1.029798.8955 r35=(r34+v) q=(9798.8955+200) 1.0210198.8734   y=32q=2 \%=1 + \dfrac{ 2 }{ 100 }=1.02 \ \\ v=200 \ \text{eur} \ \\ r_{1}=v \cdot \ q=200 \cdot \ 1.02=204 \ \text{eur} \ \\ r_{2}=(r_{1}+v) \cdot \ q=(204+200) \cdot \ 1.02=\dfrac{ 10302 }{ 25 }=412.08 \ \\ r_{3}=(r_{2}+v) \cdot \ q=(412.08+200) \cdot \ 1.02=624.3216 \ \\ r_{4}=(r_{3}+v) \cdot \ q=(624.3216+200) \cdot \ 1.02 \doteq 840.808 \ \\ r_{5}=(r_{4}+v) \cdot \ q=(840.808+200) \cdot \ 1.02 \doteq 1061.6242 \ \\ r_{6}=(r_{5}+v) \cdot \ q=(1061.6242+200) \cdot \ 1.02 \doteq 1286.8567 \ \\ r_{7}=(r_{6}+v) \cdot \ q=(1286.8567+200) \cdot \ 1.02 \doteq 1516.5938 \ \\ r_{8}=(r_{7}+v) \cdot \ q=(1516.5938+200) \cdot \ 1.02 \doteq 1750.9257 \ \\ r_{9}=(r_{8}+v) \cdot \ q=(1750.9257+200) \cdot \ 1.02=1989.9442 \ \\ r_{10}=(r_{9}+v) \cdot \ q=(1989.9442+200) \cdot \ 1.02 \doteq 2233.7431 \ \\ r_{11}=(r_{10}+v) \cdot \ q=(2233.7431+200) \cdot \ 1.02 \doteq 2482.4179 \ \\ r_{12}=(r_{11}+v) \cdot \ q=(2482.4179+200) \cdot \ 1.02 \doteq 2736.0663 \ \\ r_{13}=(r_{12}+v) \cdot \ q=(2736.0663+200) \cdot \ 1.02 \doteq 2994.7876 \ \\ r_{14}=(r_{13}+v) \cdot \ q=(2994.7876+200) \cdot \ 1.02 \doteq 3258.6834 \ \\ r_{15}=(r_{14}+v) \cdot \ q=(3258.6834+200) \cdot \ 1.02 \doteq 3527.8571 \ \\ r_{16}=(r_{15}+v) \cdot \ q=(3527.8571+200) \cdot \ 1.02 \doteq 3802.4142 \ \\ r_{17}=(r_{16}+v) \cdot \ q=(3802.4142+200) \cdot \ 1.02 \doteq 4082.4625 \ \\ r_{18}=(r_{17}+v) \cdot \ q=(4082.4625+200) \cdot \ 1.02 \doteq 4368.1117 \ \\ r_{19}=(r_{18}+v) \cdot \ q=(4368.1117+200) \cdot \ 1.02 \doteq 4659.474 \ \\ r_{20}=(r_{19}+v) \cdot \ q=(4659.474+200) \cdot \ 1.02 \doteq 4956.6634 \ \\ r_{21}=(r_{20}+v) \cdot \ q=(4956.6634+200) \cdot \ 1.02 \doteq 5259.7967 \ \\ r_{22}=(r_{21}+v) \cdot \ q=(5259.7967+200) \cdot \ 1.02 \doteq 5568.9926 \ \\ r_{23}=(r_{22}+v) \cdot \ q=(5568.9926+200) \cdot \ 1.02 \doteq 5884.3725 \ \\ r_{24}=(r_{23}+v) \cdot \ q=(5884.3725+200) \cdot \ 1.02 \doteq 6206.0599 \ \\ r_{25}=(r_{24}+v) \cdot \ q=(6206.0599+200) \cdot \ 1.02 \doteq 6534.1811 \ \\ r_{26}=(r_{25}+v) \cdot \ q=(6534.1811+200) \cdot \ 1.02 \doteq 6868.8648 \ \\ r_{27}=(r_{26}+v) \cdot \ q=(6868.8648+200) \cdot \ 1.02 \doteq 7210.2421 \ \\ r_{28}=(r_{27}+v) \cdot \ q=(7210.2421+200) \cdot \ 1.02 \doteq 7558.4469 \ \\ r_{29}=(r_{28}+v) \cdot \ q=(7558.4469+200) \cdot \ 1.02 \doteq 7913.6158 \ \\ r_{30}=(r_{29}+v) \cdot \ q=(7913.6158+200) \cdot \ 1.02 \doteq 8275.8882 \ \\ r_{31}=(r_{30}+v) \cdot \ q=(8275.8882+200) \cdot \ 1.02 \doteq 8645.4059 \ \\ r_{32}=(r_{31}+v) \cdot \ q=(8645.4059+200) \cdot \ 1.02 \doteq 9022.314 \ \\ r_{33}=(r_{32}+v) \cdot \ q=(9022.314+200) \cdot \ 1.02 \doteq 9406.7603 \ \\ r_{34}=(r_{33}+v) \cdot \ q=(9406.7603+200) \cdot \ 1.02 \doteq 9798.8955 \ \\ r_{35}=(r_{34}+v) \cdot \ q=(9798.8955+200) \cdot \ 1.02 \doteq 10198.8734 \ \\ \ \\ \ \\ y=32



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
Do you want to convert time units like minutes to seconds?

Next similar math problems:

  1. Iron density
    pipe1_2 Calculate the weight of a 2 m long rail pipe with an internal diameter of 10 cm and a wall thickness of 3 mm. The iron density is p = 7.8 g/cm3.
  2. The water tank
    hydroglobus The water tank has the shape of a sphere with a radius of 2 m. How many liters of water will fit in the tank? How many kilograms of paint do we need to paint the tank, if we paint with 1 kg of paint 10 m2?
  3. Orlík hydroelectric plant
    1280px-Orlík_1 The Orlík hydroelectric power plant, built in 1954-1961, consists of four Kaplan turbines. For each of them, the water with a flow rate of Q = 150 m3/s is supplied with a flow rate of h = 70.5 m at full power. a) What is the total installed power of the
  4. Pump
    pumpa What power has a pump output to move 4853 hl of water to a height of 31 m for 8 hours?
  5. Cu thief
    trolleywire_1 The thief stole 121 meters copper wire with cross-section area of 103 mm2. Calculate how much money gets in the scrap redemption, if redeemed copper for 4.6 eur/kg? The density of copper is 8.96 t/m3.
  6. A car
    car_31 A car weighing 1.05 tonnes driving at the maximum allowed speed in the village (50 km/h) hit a solid concrete bulkhead. Calculate height it would have to fall on the concrete surface to make the impact intensity the same as in the first case!
  7. Copper sheet
    cuplech The copper plate has a length of 1 m, width 94 cm and weighs 9 kg. What is the plate thickness, if 1 m3 weighs 8715 kg?
  8. The copper wire
    cu_wire The copper wire bundle with a diameter of 2.8mm has a weight of 5kg. How many meters of wire is bundled if 1m3 of copper weighs 8930kg?
  9. Angled cyclist turn
    cyclistTurn The cyclist passes through a curve with a radius of 20 m at 25 km/h. How much angle does it have to bend from the vertical inward to the turn?
  10. Heptagonal pyramid
    truncated_hexagonal_pyramid A hardwood for a column is in the form of a frustum of a regular heptagonal pyramid. The lower base edge is 18 cm and the upper base of 14 cm. The altitude is 30 cm. Determine the weight in kg if the density of the wood is 10 grams/cm3.
  11. Friction coefficient
    car What is the weight of a car when it moves on a horizontal road at a speed of v = 50 km/h at engine power P = 7 kW? The friction coefficient is 0.07
  12. Car crash
    car1_7 On the road, with a maximum permitted speed of 60 km/h, there was a car crash. From the length of the vehicle's braking distance, which was 40 m, the police investigated whether the driver did not exceed that speed. What is the conclusion of the police, a
  13. Water level
    bazen_11 How high is the water in the swimming pool with dimensions of 37m in length and 15m in width, if an inlet valve is opened for 10 hours flowing 12 liters of water per second?
  14. Density of the concrete
    beton_1 Find the density of the concrete of the cuboid-shaped column has dimensions of 20 x 20 cm x 2 m if the weight of the column is 200 kg.
  15. 3d printer
    filament 3D printing ABS filament with diameter 1.75 mm has density 1.04 g/cm3. Find the length of m = 5 kg spool filament. (how to calculate length)
  16. Iron pole
    ministranti What is the mass of pole with the shape of a regular quadrilateral prism with a length of 1 m and a cross-sectional side length of a = 4.5 cm make from iron with density ρ = 7800 kg/m³?
  17. Children pool
    hexagon_prism2 The bottom of the children's pool is a regular hexagon with a = 60 cm side. The distance of opposing sides is 104 cm, the height of the pool is 45 cm. A) How many liters of water can fit into the pool? B) The pool is made of a double layer of plastic film