# Rectangle SS

Perimeter of a rectangle is 268 cm and its diagonal is 99.3 cm. Determine the dimensions of the rectangle.

**Correct result:**Please write to us with your comment on the math problem or ask something. Thank you for helping each other - students, teachers, parents, and problem authors.

**Showing 0 comments:**

Tips to related online calculators

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Do you want to convert length units?

Pythagorean theorem is the base for the right triangle calculator.

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Do you want to convert length units?

Pythagorean theorem is the base for the right triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Rectangle field

The field has a shape of a rectangle having a length of 119 m and a width of 19 m. , How many meters have to shorten its length and increase its width to maintain its area and circumference increased by 24 m? - Faces diagonals

If the diagonals of a cuboid are x, y, and z (wall diagonals or three faces) respectively than find the volume of a cuboid. Solve for x=1.3, y=1, z=1.2 - Block or cuboid

The wall diagonals of the block have sizes of √29cm, √34cm, √13cm. Calculate the surface and volume of the block. - Flowerbed

We enlarge the circular flower bed, so its radius increased by 3 m. The substrate consumption per enlarged flower bed was (at the same layer height as before magnification) nine times greater than before. Determine the original flowerbed radius. - GP - three members

The second and third of a geometric progression are 24 and 12(c+1) respectively, given that the sum of the first three terms of progression is 76 determine value of c - Intersections 3

Find the intersections of the circles x^{2}+ y^{2}+ 6 x - 10 y + 9 = 0 and x^{2}+ y^{2}+ 18 x + 4 y + 21 = 0 - Lookout tower

How high is the lookout tower? If each step was 3 cm lower, there would be 60 more of them on the lookout tower. If it was 3 cm higher again, it would be 40 less than it is now. - An equilateral

An equilateral triangle is inscribed in a square of side 1 unit long so that it has one common vertex with the square. What is the area of the inscribed triangle? - The tourist

The tourist wanted to walk the route 16 km at a specific time. He, therefore, came out at the necessary constant speed. After a 4 km walk, however, he fell unplanned into the lake, where he almost drowned. It took him 20 minutes to get to the shore and re - TV competition

In the competition, 10 contestants answer five questions, one question per round. Anyone who answers correctly will receive as many points as the number of competitors answered incorrectly in that round. One of the contestants after the contest said: We - Conical bottle

When a conical bottle rests on its flat base, the water in the bottle is 8 cm from it vertex. When the same conical bottle is turned upside down, the water level is 2 cm from its base. What is the height of the bottle? - Three parallels

The vertices of an equilateral triangle lie on 3 different parallel lines. The middle line is 5 m and 3 m distant from the end lines. Calculate the height of this triangle. - Sides of right angled triangle

One leg is 1 m shorter than the hypotenuse, and the second leg is 2 m shorter than the hypotenuse. Find the lengths of all sides of the right-angled triangle. - Two chords

Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle. - Touch x-axis

Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis. - Two cubes

The surfaces of two cubes, one of which has an edge of 22 cm longer than the second are differ by 19272 cm^{2}. Calculate the edge length of both cubes. - Hyperbola equation

Find the hyperbola equation with the center of S [0; 0], passing through the points: A [5; 3] B [8; -10]