# Cone - from volume surface area

The volume of the rotating cone is 1,018.87 dm

^{3}, its height is 120 cm. What is the surface area of the cone?**Correct result:****Showing 0 comments:**

Tips to related online calculators

Do you want to convert length units?

Do you know the volume and unit volume, and want to convert volume units?

Pythagorean theorem is the base for the right triangle calculator.

Do you know the volume and unit volume, and want to convert volume units?

Pythagorean theorem is the base for the right triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Prism - box

The base of prism is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm^{3}. Calculate the surface of the prism. - Top of the tower

The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint - Four prisms

Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm^{2}b) 300 cm^{2}c) 3000 cm^{3}d) 300 cm^{3}Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig - Rotary bodies

The rotating cone and the rotary cylinder have the same volume 180 cm^{3}and the same height v = 15 cm. Which of these two bodies has a larger surface area? - The quadrilateral pyramid

The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area. - Rotating cone

Find the surface and volume of the rotating cone if its side is 150 mm long and the circumference of the base is 43.96 cm. - Tent

Calculate how many liters of air will fit in the tent that has a shield in the shape of an isosceles right triangle with legs r = 3 m long the height = 1.5 m and a side length d = 5 m. - Surface of the cone

Calculate the surface of the cone if its height is 8 cm and the volume is 301.44 cm^{3}. - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Quadrilateral prism

The height of a regular quadrilateral prism is v = 10 cm, the deviation of the body diagonal from the base is 60°. Determine the length of the base edges, the surface, and the volume of the prism. - The diagram 2

The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm^{2}. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone - Chocolate roll

The cube of 5 cm chocolate roll weighs 30 g. How many calories will contain the same chocolate roller of a prism shape with a length of 0.5 m whose cross section is an isosceles trapezoid with bases 25 and 13 cm and legs 10 cm. You know that 100 g of this - Base of prism

The base of the perpendicular prism is a rectangular triangle whose legs length are at a 3: 4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm^{2}. - Iglu - cone tent

The cone-shaped tent is 3 m high, the diameter of its base is 3.2 m. a) The tent is made of two layers of material. How many m^{2}of fabric is needed for production (including flooring), if 20% needs to be added to the minimum amount due to cutting waste? b - Lateral surface area

The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm. - Cone side

Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side. - Quadrilateral pyramid

In a regular quadrilateral pyramid, the height is 6.5 cm and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body. Round calculations to 1 decimal place.