# Trigonometric functions

In right triangle is:

$\text{ tg} \ \alpha = \dfrac{ 2} 1$

Determine the value of s and c:

$\text{ sin } \alpha = \dfrac{ s} { \sqrt{ 5 }}$

$\text{ cos } \alpha = \dfrac{ c} { \sqrt{ 5 }}$

Correct result:

s =  2
c =  1

#### Solution:

$\text{ tg} \ \alpha = \dfrac{ 2} { 1} = \dfrac{ a }{ b } \ \\ \text{ sin} \ \alpha = \dfrac{ a} {c} = \dfrac{ a} { \sqrt{ a^2+b^2}} = \dfrac{ 2 } { \sqrt{ 5 }}$
$\text{ cos} \ \alpha = \dfrac{ b} {c} = \dfrac{ b} { \sqrt{ a^2+b^2}} = \dfrac{ 1 } { \sqrt{ 5 }}$

We would be very happy if you find an error in the example, spelling mistakes, or inaccuracies, and please send it to us. We thank you!

Tips to related online calculators
Pythagorean theorem is the base for the right triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem:

## Next similar math problems:

• Traffic sign
There is a traffic sign for climbing on the road with an angle of 7%. Calculate at what angle the road rises (falls).
• Powerplant chimney
From the window of the building at a height of 7.5 m, the top of the factory chimney can be seen at an altitude angle of 76° 30 ′. The base of the chimney can be seen from the same place at a depth angle of 5° 50 ′. How tall is the chimney?
• The tower
The observer sees the base of the tower 96 meters high at a depth of 30 degrees and 10 minutes and the top of the tower at a depth of 20 degrees and 50 minutes. How high is the observer above the horizontal plane on which the tower stands?
The height of a regular quadrilateral prism is v = 10 cm, the deviation of the body diagonal from the base is 60°. Determine the length of the base edges, the surface, and the volume of the prism.
• Sailboat
The 20 m long sailboat has an 8 m high mast in the middle of the deck. The top of the mast is fixed to the bow and stern with a steel cable. Determine how much cable is needed to secure the mast and what angle the cable will make with the ship's deck.
• Space diagonal angles
Calculate the angle between the body diagonal and the side edge c of the block with dimensions: a = 28cm, b = 45cm and c = 73cm. Then, find the angle between the body diagonal and the plane of the base ABCD.
• Distance of points
A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S.
In a regular quadrilateral pyramid, the height is 6.5 cm and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body. Round calculations to 1 decimal place.
• An observer
An observer standing west of the tower sees its top at an altitude angle of 45 degrees. After moving 50 meters to the south, he sees its top at an altitude angle of 30 degrees. How tall is the tower?
• The staircase
The staircase has a total height of 3.6 m and forms an angle of 26° with the horizontal. Calculate the length of the whole staircase.