# Cuboid

Cuboid with edge a=16 cm and body diagonal u=45 cm has volume V=11840 cm3. Calculate the length of the other edges.

Result

b =  20 cm
c =  37 cm

#### Solution:

$V = abc \ \\ 11840 = 16 bc \ \\ bc = 740 \ \\ \ \\ u = \sqrt{ a^2+b^2+c^2 } \ \\ \ \\ 45^2 = 16^2 + b^2 + c^2 \ \\ 1769 = b^2 + c^2 \ \\ 1769 = \dfrac{ 547600}{c^2} + c^2 \ \\ c^4-1769 c^2 + 547600 = 0 \ \\ x = c^2 \ \\ \ \\ x^2 -1769x +547600 =0 \ \\ \ \\ a=1; b=-1769; c=547600 \ \\ D = b^2 - 4ac = 1769^2 - 4\cdot 1 \cdot 547600 = 938961 \ \\ D>0 \ \\ \ \\ x_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ 1769 \pm \sqrt{ 938961 } }{ 2 } \ \\ x_{1,2} = \dfrac{ 1769 \pm 969 }{ 2 } \ \\ x_{1,2} = 884.5 \pm 484.5 \ \\ x_{1} = 1369 \ \\ x_{2} = 400 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ (x -1369) (x -400) = 0 \ \\ \ \\ b>0; c>0 \ \\ \ \\ b = 20 \ \text { cm }$
$c=37 \ \text { cm }$

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...): Be the first to comment! #### Following knowledge from mathematics are needed to solve this word math problem:

Looking for help with calculating roots of a quadratic equation? Do you have a system of equations and looking for calculator system of linear equations? Do you want to convert length units? Tip: Our volume units converter will help you with the conversion of volume units. Pythagorean theorem is the base for the right triangle calculator.

## Next similar math problems:

1. Faces diagonals If the diagonals of a cuboid are x, y, and z (wall diagonals or three faces) respectively than find the volume of a cuboid. Solve for x=1.2, y=1.7, z=1.45
2. Secret treasure Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure.
3. Built-up area John build up area 5 x 7 = 35 m2 with building with a wall thickness 30 cm. How many centimeters would have to subtract from thickness of the walls that built-up area fell by 9%?
4. Rectangle SS Perimeter of a rectangle is 268 cm and its diagonal is 99.3 cm. Determine the dimensions of the rectangle.
5. Two chords Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle.
6. Trolleybus Trolleybus line No. 206 measured 24 km. If the trolleybus goes faster by 5 km/h, the way there and back would is shorter by 33 minutes. Calculate the trolleybus speed and how much time it takes a return trip.
7. Trains From station 130 km away started passenger train and after 2.2 hours after the express train, which travels 37 km an hour more. Express train finish journey 7 minutes early. Calculate the average speed of this two trains.
8. Euclid3 Calculate height and sides of the right triangle, if one leg is a = 81 cm and section of hypotenuse adjacent to the second leg cb = 39 cm.
9. Abyss Stone was pushed into the abyss: 2 seconds after we heard hitting the bottom. How deep is the abyss (neglecting air resistance)? (gravitational acceleration g = 9.81 m/s2 and the speed of sound in air v = 343 m/s)
10. Tourist Jirka Distance between the points A and B is 13.5 km. Jirka went from point A to point B unknown speed and for an unknown period of time. Back to the point A went slower by 3 km/h which means that went 20 minutes more. How long Jirka took the return journey?
11. Bomber Bomber flies 10 km at 600 km/h. At what horizontal distance from the target, must pilot drop the bomb to hit the target? Don't care about air resistance and consider the gravitational acceleration g=9.81 m/s2.
12. Two cyclists 2 At the same time, two cyclists left the towns A and B at constant speeds. The first one going from town A to town B, and the second one from town B to town A. At one point of the trip they met. After they met, the first cyclist arrived at town B in 36min,.
13. Distance problem 2 A=(x,2x) B=(2x,1) Distance AB=√2, find value of x
14. Distance problem A=(x, x) B=(1,4) Distance AB=√5, find x;
15. The escalator I run up the escalator at a constant speed in the direction of the stairs and write down the number of steps A we climbed. Then we turn around and run it at the same constant speed in the opposite direction and write down the number of steps B that I climb
16. Equation 23 Find value of unknown x in equation: x+3/x+1=5 (problem finding x)
17. Medians in right triangle It is given a right triangle, angle C is 90 degrees. I know it medians t1 = 8 cm and median t2 = 12 cm. .. How to calculate the length of the sides?