# Rectangular cuboid

The rectangular cuboid has a surface area 5334 cm2, its dimensions are in the ratio 2:4:5. Find the volume of this rectangular cuboid.

Result

V =  23519.015 cm3

#### Solution:

$a=2 \ x \ \\ b=4 \ x \ \\ c=5 \ x \ \\ S=5334 \ \text{cm}^2 \ \\ \ \\ S=2(ab+bc+ac)=2(2 \cdot \ 4 \ x^2 + 4 \cdot \ 5 \ x^2 + 2 \cdot \ 5 \ x^2) \ \\ S=76 \ x^2 \ \\ \ \\ x=\sqrt{ S / 76 }=\sqrt{ 5334 / 76 } \doteq 8.3776 \ \text{cm} \ \\ \ \\ a=2 \cdot \ x=2 \cdot \ 8.3776 \doteq 16.7552 \ \text{cm} \ \\ b=4 \cdot \ x=4 \cdot \ 8.3776 \doteq 33.5104 \ \text{cm} \ \\ c=5 \cdot \ x=5 \cdot \ 8.3776 \doteq 41.888 \ \text{cm} \ \\ \ \\ V=a \cdot \ b \cdot \ c=16.7552 \cdot \ 33.5104 \cdot \ 41.888 \doteq 23519.0145 \doteq 23519.015 \ \text{cm}^3$

Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Amy
Not very useful plz give worked example with steps

2 years ago  2 Likes
Dr Math
Example is complete with solution  step-by-step

Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Check out our ratio calculator.
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Tip: Our volume units converter will help you with the conversion of volume units.

## Next similar math problems:

1. Two rectangular boxes
Two rectangular boxes with dimensions of 5 cm, 8 cm, 10 cm, and 5 cm, 12 cm, 1 dm are to be replaced by a single cube box of the same cubic volume. Calculate its surface.
2. Triangular prism
The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism.
Calculate the volume (V) and the surface (S) of a regular quadrilateral prism whose height is 28.6 cm and the deviation of the body diagonal from the base plane is 50°.
4. Block or cuboid
The wall diagonals of the block have sizes of √29cm, √34cm, √13cm. Calculate the surface and volume of the block.
5. Cuboid and ratio
Find the dimensions of a cuboid having a volume of 810 cm3 if the lengths of its edges coming from the same vertex are in ratio 2: 3: 5
6. Surface of the cube
Find the surface of the cube that has volume 1/1m3 2/0.001 m3 3/8000 mm3
7. Triangular prism,
The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
8. Kostka
Kostka je vepsána do koule o poloměru r = 6 cm. Kolik procent tvoří objem kostky z objemu koule?
9. The largest
The largest possible cylinder was cut from a 20 cm cube. What is the volume of this cylinder?
10. The edge of a cube
How much does the edge of a cube of 54.9 cm3 measure?
11. Wall thickness
The hollow metal ball has an outside diameter of 40 cm. Determine the wall thickness if the weight is 25 kg and the metal density is 8.45 g/cm3.
12. Height of the cylinder
The cylinder volume is 150 dm cubic, the base diameter is 100 cm. What is the height of the cylinder?
13. Permille of alcohol
I have 2 per mille of alcohol in my blood. How many milliliters is it when I have 5 liters of blood?
14. Hemisphere cut
Calculate the volume of the spherical layer that remains from the hemisphere after the 3 cm section is cut. The height of the hemisphere is 10 cm.
15. Tetrahedral pyramid 8
Let’s all side edges of the tetrahedral pyramid ABCDV be equally long and its base let’s be a rectangle. Determine its volume if you know the deviations A=40° B=70° of the planes of adjacent sidewalls and the plane of the base and the height h=16 of the p
16. Half-filled
A cylindrical pot with a diameter of 24 cm is half-filled with water. How many centimeters will the level rise if we add a liter of water to it?
17. Wax candles
A company makes wax candles in the shape of a cylinder. Each candle has a diameter of 4 inches and a height of 7 inches. If the company used 7561.12 in3 of wax, how many candles did it make? Use 3.14, and do not round your answer