River

From the observatory 11 m high and 24 m from the river bank, river width appears in the visual angle φ = 13°. Calculate width of the river.

Result

y =  29.5 m

Solution:

h=11 m x=24 m A=13  =13 π180 rad=0.226892802759 rad B=arctan(x/h)=arctan(24/11)1.141 C=A+B=0.2269+1.1411.3679 rad c=180/π C=180/3.1416 1.367978.3764  tanC=(x+y)/h y=h tan(C)x=11 tan(1.3679)2429.4762=29.5  m h = 11 \ m \ \\ x = 24 \ m \ \\ A = 13 \ \ ^\circ = 13 \cdot \ \frac{ \pi }{ 180 } \ rad = 0.226892802759 \ rad \ \\ B = \arctan (x/h) = \arctan (24/11) \doteq 1.141 \ \\ C = A+B = 0.2269+1.141 \doteq 1.3679 \ rad \ \\ c = 180/\pi \cdot \ C = 180/3.1416 \cdot \ 1.3679 \doteq 78.3764 \ ^\circ \ \\ \tan C = (x+y)/h \ \\ y = h \cdot \ \tan(C)-x = 11 \cdot \ \tan(1.3679)-24 \doteq 29.4762 = 29.5 \ \text { m }







Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you want to convert length units? Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator.