Find the 5

Find the equation with center at (1,20) which touches the line 8x+5y-19=0

Result

e = (Correct answer is: e = pow(x-1, 2)+pow(y-20, 2) = 89) Wrong answer

Solution:

x0=1 y0=20  8x+5y19=0  s=8 x0+5 y019=8 1+5 2019=89 a=82+52=899.434 r=sa=899.434=899.434  (xx0)2+(yy0)2=r2 e=(x1)2+(y20)2=89



We would be very happy if you find an error in the example, spelling mistakes, or inaccuracies, and please send it to us. We thank you!






Showing 1 comment:
#
Dr Math
Hint - use formula for Distance Between a Point and a Line = which is radius of circle

2 years ago  2 Likes
avatar









Tips to related online calculators
For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Two vectors given by its magnitudes and by included angle can be added by our vector sum calculator.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Vector perpendicular
    3dperpendicular Find the vector a = (2, y, z) so that a⊥ b and a ⊥ c where b = (-1, 4, 2) and c = (3, -3, -1)
  • Find the 10
    lines Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular, parallel, what angle does each of the lines make with the x-axis, find the angle between the lines?
  • Vector v4
    scalar_product Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1)
  • Parallel and orthogonal
    vectors2 I need math help in this problem: a=(-5, 5 3) b=(-2,-4,-5) (they are vectors) Decompose the vector b into b=v+w where v is parallel to a and w is orthogonal to a, find v and w
  • Coordinates of square vertices
    ctverec_2 The ABCD square has the center S [−3, −2] and the vertex A [1, −3]. Find the coordinates of the other vertices of the square.
  • Three points
    triangle_rt_taznice Three points K (-3; 2), L (-1; 4), M (3, -4) are given. Find out: (a) whether the triangle KLM is right b) calculate the length of the line to the k side c) write the coordinates of the vector LM d) write the directional form of the KM side e) write the d
  • Angle between vectors
    arccos Find the angle between the given vectors to the nearest tenth of a degree. u = (-22, 11) and v = (16, 20)
  • Triangle
    sedlo Triangle KLM is given by plane coordinates of vertices: K[11, -10] L[10, 12] M[1, 3]. Calculate its area and its interior angles.
  • Parametric form
    vzdalenost Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. ..
  • Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.
  • Vector equation
    collinear2 Let’s v = (1, 2, 1), u = (0, -1, 3) and w = (1, 0, 7) . Solve the vector equation c1 v + c2 u + c3 w = 0 for variables c1 c2, c3 and decide weather v, u and w are linear dependent or independent
  • Cuboids
    3dvectors Two separate cuboids with different orientation in space. Determine the angle between them, knowing the direction cosine matrix for each separate cuboid. u1=(0.62955056, 0.094432584, 0.77119944) u2=(0.14484653, 0.9208101, 0.36211633)
  • Decide 2
    vectors2 Decide whether points A[-2, -5], B[4, 3] and C[16, -1] lie on the same line
  • Calculate 6
    distance_point_line Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
  • Dodecagon
    clocks Calculate the size of the smaller of the angles determined by lines A1 A4 and A2 A10 in the regular dodecagon A1A2A3. .. A12. Express the result in degrees.
  • Angle of the body diagonals
    body_diagonals_angle Using vector dot product calculate the angle of the body diagonals of the cube.
  • Scalar product
    vectors_sum0_2 Calculate the scalar product of two vectors: (2.5) (-1, -4)