MO Z8-I-1 2018

Fero and David meet daily in the elevator. One morning they found that if they multiply their current age, they get 238. If they did the same after four years, this product would be 378. Determine the sum of the current ages of Fero and David.

Correct result:

s =  31

Solution:

a (sa)=238 (a+4) (sa+4)=378  asa2=238 asa2+4a+4s4a+16=378  asa2=238 asa2+4s+16=378   238+4s+16=378  238+4 s+16=378  4s=124  s=31a \cdot \ (s-a)=238 \ \\ (a+4) \cdot \ (s-a+4)=378 \ \\ \ \\ as-a^2=238 \ \\ as-a^2+4a +4s-4a+16=378 \ \\ \ \\ as-a^2=238 \ \\ as-a^2+4s+16=378 \ \\ \ \\ \ \\ 238 + 4s + 16=378 \ \\ \ \\ 238 + 4 \cdot \ s + 16=378 \ \\ \ \\ 4s=124 \ \\ \ \\ s=31

The equations have the following integer solutions:
a*(s-a)=238
(a+4)*(s-a+4) = 378


Number of solutions found: 2
a1=14, s1=31
a2=17, s2=31

Calculated by our Diofant problems and integer equations.



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!


Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Do you solve Diofant problems and looking for a calculator of Diofant integer equations?
Do you want to convert time units like minutes to seconds?

Next similar math problems:

  • Two cyclists 2
    cyclist_45 At the same time, two cyclists left the towns A and B at constant speeds. The first one going from town A to town B, and the second one from town B to town A. At one point of the trip they met. After they met, the first cyclist arrived at town B in 36min,
  • Working alone
    workers Tom and Chandri are doing household chores. Chandri can do the work twice as fast as Tom. If they work together, they can finish the work in 5 hours. How long does it take Tom working alone to do the same work?
  • Young mathematician
    age_1 One young mathematician was bored again. He found that the average age of people in the room where the seminar is equal to its count. Then his 29-year-old brother entered this room. Even then, the average age of all present was the same as the count of pe
  • Speed of car
    autosalon_2 The car went to a city that was 240 km away. If his speed increased by 8 km/h, it would reach the finish one hour earlier. Determine its original speed.
  • Blueberries 2
    boruvky_2 Lenka and Martin collected eight liters of blueberries in two hours. How long will take to collect blueberries by Lenka itself, if we know that she collect all 2.5 hours less than Martin?
  • The tourist
    eq2 The tourist wanted to walk the route 16 km at a specific time. He, therefore, came out at the necessary constant speed. After a 4 km walk, however, he fell unplanned into the lake, where he almost drowned. It took him 20 minutes to get to the shore and re
  • Two pipes
    roura_1 How long will the pool be filled with a double supply pipe if it takes the pool to fill the first pipe by 4 hours longer and the second pipe 9 hours longer than both pipes open at the same time?
  • Express train
    trains_13 International express train drove from Kosice to Teplice. In the first 279 km, the track was repaired, and therefore it was moving at a speed of 10km/h less than it was scheduled to drive. The rest of the 465 km trip has increased the speed by 8 km/h than
  • 2 pipes
    time_12 2 pipes can fill a tank in 35 minutes. The larger pipe alone can fill the tank in 24 minutes less time than the smaller pipe. How long does each pipie take to fill the tank alone?
  • Flying
    aircraft-02_8 The airplane from Prague to Bratislava was flying at a speed of 60 km/h less and back by 70 km/h greater than the original speed. What was the original speed if the plane returned to Prague according to the timetable?
  • The cruise ship
    ship_3 The cruise ship has a speed of 12 km / h at a calm surface. When we sail 45 km along the river and 45 km back, it took us exactly 8 hours. Which (constant) speed of flow of the river?
  • Work
    workers_21 The first worker would need less than 4 hours to complete the task than the other worker. In fact, both workers worked for two hours together, then the first worker did the remaining work himself. In what proportion should the remuneration of the workers
  • Two workers
    workers_20 Two workers should fulfill certain task together for 5 days. If the first worker increased their performance twice and second twice fell, it took them just four days. For how many days would handle the entire task first worker himself?
  • Wagons and cranes
    wagon_1 Several of the same cranes unloaded 96 wagons. If there were 2 more cranes there would be less 8 wagons for each crane. How many cranes were here?
  • Average age
    age_4 The average age of all people at the celebration was equal to the number of people present. After the departure of one person who was 29 years old, average age was again equal to the number present. How many people were originally to celebrate?
  • Two trucks
    cars_6 Two trucks left cities A and B against each other and met after an hour. The first car came to B 27 minutes later than the second car to A. Calculate the car speed if the distance between cities A, B is 90 km.
  • Two pipes
    2pipes One pipe fill one-fifth volume 20 minutes before by second one. The two pipes together will fill the tank in two hours. How long is will fill tank each pipe separately?