# RT sides

Find the sides of a rectangular triangle if legs a + b = 17cm and the radius of the written circle ρ = 2cm.

**Correct result:**Please write to us with your comment on the math problem or ask something. Thank you for helping each other - students, teachers, parents, and problem authors.

**Showing 0 comments:**

Tips to related online calculators

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Integer sides

A right triangle with an integer length of two sides has one leg √11 long. How much is its longest side? - Similarity coefficient

In the triangle TMA the length of the sides is t = 5cm, m = 3.5cm, a = 6.2cm. Another similar triangle has side lengths of 6.65 cm, 11.78 cm, 9.5 cm. Determine the similarity coefficient of these triangles and assign similar sides to each other. - Which

Which of the following numbers most accurately area of a regular decagon with side s = 2 cm? (A) 9.51 cm^{2}(B) 20 cm^{2}(C) 30.78 cm^{2}(D) 31.84 cm^{2}(E) 32.90 cm^{2} - Parallelogram

Find the perimeter of the parallelogram, where base a = 8 cm, height v = 3 cm, and angle alpha = 35° is the magnitude of the angle at vertex A. - Inclined plane

1. How much work W we have to do to pull a body weighing 200 kg along an inclined plane with a length of 4 m to a total height of 1.5 m. 2. Find the force we need to exert to do this if we neglect frictional resistance. 3. Find the force we would need i - Pentadecagon

Calculate the content of a regular 15-sides polygon inscribed in a circle with radius r = 4. Express the result to two decimal places. - Coordinates

Determine the coordinates of the vertices and the content of the parallelogram, the two sides of which lie on the lines 8x + 3y + 1 = 0, 2x + y-1 = 0 and the diagonal on the line 3x + 2y + 3 = 0 - Triangular prism

The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm^{3}? And the surface cm^{2}? - Dodecagon

Calculate the size of the smaller of the angles determined by lines A1 A4 and A2 A10 in the regular dodecagon A1A2A3. .. A12. Express the result in degrees. - Two chords

From the point on the circle with a diameter of 8 cm, two identical chords are led, which form an angle of 60°. Calculate the length of these chords. - Calculate 6

Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1]. - The funnel

The funnel has the shape of an equilateral cone. Calculate the content of the area wetted with water if you pour 3 liters of water into the funnel. - Powerplant chimney

From the window of the building at a height of 7.5 m, the top of the factory chimney can be seen at an altitude angle of 76° 30 ′. The base of the chimney can be seen from the same place at a depth angle of 5° 50 ′. How tall is the chimney? - Sailboat

The 20 m long sailboat has an 8 m high mast in the middle of the deck. The top of the mast is fixed to the bow and stern with a steel cable. Determine how much cable is needed to secure the mast and what angle the cable will make with the ship's deck. - Chord of triangle

If the whole chord of the triangle is 14.4 cm long, how do you calculate the shorter and longer part? - An observer

An observer standing west of the tower sees its top at an altitude angle of 45 degrees. After moving 50 meters to the south, he sees its top at an altitude angle of 30 degrees. How tall is the tower? - Trip with compass

During the trip, Peter went 5 km straight north from the cottage, then 12 km west and finally returned straight to the cottage. How many kilometers did Peter cover during the whole trip?