Right circular cone

The volume of a right circular cone is 5 liters. Calculate the volume of the two parts into which the cone is divided by a plane parallel to the base, one-third of the way down from the vertex to the base.

Correct result:

V1 =  0.1852 l
V2 =  4.8148 l

Solution:

V=5 l dm3=5 1  dm3=5 dm3  V=13 S h  h1=13h S1=132S=19S  V1=13 S1 h1=13 19S 13h  V1=V 133=5 133=527=0.1852 l
V2=VV1=50.1852=13027=4.8148 l



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 1 comment:
#
Dr Math
1:3 is the ratio of heights
1:32 = 1:9 is the ratio of the area of base circles... due to two dimensional nature of the area.
1:33 = 1:27 is the ratio of volumes...  .. volume has three-dimensional nature

avatar









Tips to related online calculators
Check out our ratio calculator.
Tip: Our volume units converter will help you with the conversion of volume units.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1

Next similar math problems:

  • Find the 10
    lines Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular, parallel, what angle does each of the lines make with the x-axis, find the angle between the lines?
  • Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.
  • Perpendicular projection
    lines Determine the distance of a point B[1, -3] from the perpendicular projection of a point A[3, -2] on a straight line 2 x + y + 1 = 0.
  • Ascend vs. descent
    lines Which function is growing? a) y = 2-x b) y = 20 c) y = (x + 2). (-5) d) y = x-2
  • Vector v4
    scalar_product Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1)
  • Calculate 6
    distance_point_line Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
  • Dodecagon
    clocks Calculate the size of the smaller of the angles determined by lines A1 A4 and A2 A10 in the regular dodecagon A1A2A3. .. A12. Express the result in degrees.
  • Decide 2
    vectors2 Decide whether points A[-2, -5], B[4, 3] and C[16, -1] lie on the same line
  • Vector perpendicular
    3dperpendicular Find the vector a = (2, y, z) so that a⊥ b and a ⊥ c where b = (-1, 4, 2) and c = (3, -3, -1)
  • Vector equation
    collinear2 Let’s v = (1, 2, 1), u = (0, -1, 3) and w = (1, 0, 7) . Solve the vector equation c1 v + c2 u + c3 w = 0 for variables c1 c2, c3 and decide weather v, u and w are linear dependent or independent
  • Angle of the body diagonals
    body_diagonals_angle Using vector dot product calculate the angle of the body diagonals of the cube.
  • Coordinates of a centroind
    triangle_234 Let’s A = [3, 2, 0], B = [1, -2, 4] and C = [1, 1, 1] be 3 points in space. Calculate the coordinates of the centroid of △ABC (the intersection of the medians).
  • Parametric form
    vzdalenost Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. ..
  • Set of coordinates
    axes2 Consider the following ordered pairs that represent a relation. {(–4, –7), (0, 6), (5, –3), (5, 2)} What can be concluded of the domain and range for this relation?
  • Find the 5
    distance-between-point-line Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0
  • Two people
    crossing Two straight lines cross at right angles. Two people start simultaneously at the point of intersection. John walking at the rate of 4 kph in one road, Jenelyn walking at the rate of 8 kph on the other road. How long will it take for them to be 20√5 km apa
  • Points collinear
    collinear Show that the point A(-1,3), B(3,2), C(11,0) are col-linear.