Geometry - problems - page 6

  1. Rhombus
    rhombus_5 ABCD is a rhombus, ABD is an equilateral triangle and AC is equal to 4. Find the area of the rhombus.
  2. Vector
    vectors Determine coordinates of the vector u=CD if C[19;-7], D[-16,-5].
  3. Triangle SSA
    trojuhol Construct a triangle ABC if |AB| = 5cm va = 3cm, CAB = 50 °. It is to create the analysis and construction steps.
  4. Medians in triangle
    stredne_pricky Median of isosceles triangle has a length 3 cm. Determine the length of its sides if its perimeter is 16 cm.
  5. Right angled triangle 2
    vertex_triangle_right LMN is a right angled triangle with vertices at L(1,3), M(3,5) and N(6,n). Given angle LMN is 90° find n
  6. Right triangle - leg
    pythag_triangle Calculate to the nearest tenth cm length of leg in right-angled triangle with hypotenuse length 9 cm and 7 cm long leg.
  7. Tangents construct
    tecna Circle is given k (S; 2.5 cm) and an outer line p. Construct a tangent t of the circle that has with a line p angle 60°. How many solutions has the task?
  8. Three points
    fun2 Mark three points E, F and G in the plane not lie on one line. a) Draw a line segment FG b) Construct halfline (ray) EG c) Draw a line EF
  9. Mine
    bana What is temperature in the mine at a depth of 1160 m, where at depth 9 m is 11°C and every 100 m, the temperature increases by 0.7°C?
  10. Line segment
    line-segment.JPG For the line segment whose endpoints are L[-1, 13] and M[18, 2], find the x and y value for the point located 4 over 7 the distance from L to M.
  11. Three vectors
    vectors_sum0 The three forces whose amplitudes are in ratio 9:10:17 act in the plane at one point so that they are in balance. Determine the angles of the each two forces.
  12. Parabola
    parabola_1 Find the equation of a parabola that contains the points at A[6; -5], B[14; 9], C[23; 6]. (use y = ax2+bx+c)
  13. Center of gravity
    map_1 The mass points are distributed in space as follows - specify by coordinates and weight. Find the center of gravity of the mass points system: A1 [14; -2; 5] m1 = 10.2 kg A2 [-2; -16; 7] m2 = 13.6 kg A3
  14. Traffic laws
    car_lights Under traffic regulations, car lights can illuminate the road up to a maximum of 30 m. To check the reach of the dipped-beam lights of their car, Peter stopped car at 1.5 m from the wall. The dipped-beam headlights are 60 cm high. At what height on the wa
  15. Clock face
    center_angle clock face is given. Numbers 10 and 5, and 3 and 8 are connected by straight lines. Calculate the size of their angles.
  16. Inscribed circle
    Su55k02_m10 Write the equation of a incircle of the triangle KLM if K [2,1], L [6,4], M [6,1].
  17. Square ABCD
    squares_5 Construct a square ABCD with cente S [3,2] and the side a = 4 cm. Point A lies on the x-axis. Construct square image in the displacement given by oriented segment SS'; S` [-1 - 4].
  18. Square
    rectangle2 Draw a square on the edge of a = 4 cm. Mark the center of symmetry S and all axes of symmetry. How many axes of symmetry does? Write down.
  19. Tree shadow
    tree3 The shadow of the tree is 16 meters long. Shadow of two meters high tourist sign beside standing is 3.2 meters long. What height has tree (in meters)?
  20. Line
    lines_1 Write an equation of a line parallel to To 9x + 3y = 8 That Passes Through The Point (-1, -4). Write in form ax+by=c.

Do you have an interesting mathematical problem that you can't solve it? Enter it, and we can try to solve it.



To this e-mail address, we will reply solution; solved examples are also published here. Please enter e-mail correctly and check whether you don't have a full mailbox.