Pythagorean theorem - problems - page 2

1. Movement
From the crossing of two perpendicular roads started two cyclists (each at different road). One runs at average speed 24 km/h, the second at average speed 16 km/h. Determine the distance between them after 35 minutes cycling.
2. Square
Points A[-9,6] and B[-5,-3] are adjacent vertices of the square ABCD. Calculate area of the square ABCD.
3. Is right?
Is triangle with sides 51, 56 and 77 right triangle?
4. Gimli Glider
Aircraft Boeing 767 lose both engines at 45000 feet. The plane captain maintain optimum gliding conditions. Every minute, lose 1870 feet and maintain constant speed 212 knots. Calculate how long takes to plane from engines failure to hit ground. Calculate
5. Short cut
Imagine that you are going to the friend. That path has a length 270 meters. Then turn left and go another 1810 meters and you are at a friend's. The question is how much the journey will be shorter if you go direct across the field?
6. Cubes
One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 254 cm2.
7. Cone A2V
Surface of cone in the plane is a circular arc with central angle of 126° and area 415 dm2. Calculate the volume of a cone.
8. River
From the observatory 14 m high and 32 m from the river bank, river width appears in the visual angle φ = 20°. Calculate width of the river.
9. Cube diagonal
Determine length of the cube diagonal with edge 33 km.
10. Rhombus
Calculate the perimeter and area of ​​rhombus whose diagonals are 38 cm and 55 cm long.
11. Logs
Trunk diameter is 52 cm. Is it possible to inscribe a square prism with side 36 cm?
12. Square and circles
Square with sides 61 mm is circumscribed and inscribed with circles. Determine the radiuses of both circles.
13. Rectangle
In rectangle with sides 3 and 10 mark the diagonal. What is the probability that a randomly selected point within the rectangle is closer to the diagonal than to any side of the rectangle?
14. Proof PT
Can you easy prove Pythagoras theorem using Euclidean theorems? If so, do it.
15. Rhombus ABCD
Rhombus ABCD, |AC| = 97 cm, |BD| = 35 cm. Calculate the perimeter of the rhombus ABCD.
16. Diagonal
Calculate the length of the diagonal of the rectangle ABCD with sides a = 8 cm, b = 7 cm.
17. Forces
In point O acts three orthogonal forces: F1 = 20 N, F2 = 7 N and F3 = 19 N. Determine the resultant of F and the angles between F and forces F1, F2 and F3.
18. Widescreen monitor
Computer business hit by a wave of widescreen monitors and televisions. Calculate the area of ​​the LCD monitor with a diagonal size 20 inches at ratio 4:3 and then 16:9 aspect ratio. Is buying widescreen monitors with same diagonal more advantageous tha
19. Reverse Pythagorean theorem
Given are lengths of the sides of the triangles. Decide which one is rectangular: Δ ABC: 77 dm, 85 dm, 36 dm ? Δ DEF: 55 dm, 82 dm, 61 dm ? Δ GHI: 24 mm, 25 mm, 7 mm ? Δ JKL: 32 dm, 51 dm, 82 dm ? Δ MNO: 51 dm, 45 dm, 24 dm ?
20. MO SK/CZ Z9–I–3
John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball.

Do you have interesting mathematical problem that you can't solve it? Enter it and we can try to solve it.

To this e-mail address we will reply solution; solved examples are also published here. Please enter e-mail correctly and check whether you don't have a full mailbox.

Pythagorean theorem is the base for the right triangle calculator.