# Volume + expression of a variable from the formula - math problems

- A concrete pedestal

A concrete pedestal has a shape of a right circular cone having a height of 2.5 feet. The diameter of the upper and lower bases are 3 feet and 5 feet, respectively. Determine the lateral surface area, total surface area, and the volume of the pedestal. - Floating of wood - Archimedes law

What will be the volume of the floating part of a wooden (balsa) block with a density of 200 kg/m3 and a volume of 0.02 m^{3}that floats in alcohol? (alcohol density is 789 kg/m3) - Frustum of a cone

A reservoir contains 28.54 m^{3}of water when completely full. The diameter of the upper base is 3.5 m while at the lower base is 2.5 m. Determine the height if the reservoir is in the form of a frustum of a right circular cone. - Cylinder and its circumference

If the height of a cylinder is 4 times its circumference. What is the volume of the cylinder in terms of its circumference, c? - Body diagonal

Calculate the volume of a cuboid whose body diagonal u is equal to 6.1 cm. Rectangular base has dimensions of 3.2 cm and 2.4 cm - Secret treasure

Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure. - Cube in a sphere

The cube is inscribed in a sphere with volume 9067 cm^{3}. Determine the length of the edges of a cube. - Rectangular cuboid

The rectangular cuboid has a surface area 5334 cm^{2}, its dimensions are in the ratio 2:4:5. Find the volume of this rectangular cuboid. - Cone

Circular cone of height 15 cm and volume 5699 cm^{3}is at one-third of the height (measured from the bottom) cut by a plane parallel to the base. Calculate the radius and circumference of the circular cut. - Sea water

Mixing 62 kg of sea water with 84 kg rainwater is created water containing 3.1% salt. How many percent sea water contains salt? - Floating barrel

Barrel (cylinder shape) floats on water, top of barrel is 8 dm above water and the width of surfaced barrel part is 23 dm. Barrel length is 24 dm. Calculate the volume of the barrel. - Truncated cone

Calculate the height of the rotating truncated cone with volume V = 1115 cm^{3}and a base radii r_{1}= 7.9 cm and r_{2}= 9.7 cm. - Hollow sphere

Steel hollow sphere floats on the water plunged into half its volume. Determine the outer radius of the sphere and wall thickness, if you know that the weight of the sphere is 0.5 kg and density of steel is 7850 kg/m^{3} - Spherical segment

Spherical segment with height h=7 has a volume V=198. Calculate the radius of the sphere of which is cut this segment. - Pumps

Pump that draws water at velocity 3.5 liters per second water from a construction trench take 35 minutes. a) Find out how many minutes the water would run out of the trench pump that draws 7.4 liters of water per second. b) What is the pumping velocity wo - Equilateral cylinder

Equilateral cylinder (height = base diameter; h = 2r) has a volume of V = 199 cm^{3}. Calculate the surface area of the cylinder. - Iron sphere

Iron sphere has weight 100 kg and density ρ = 7600 kg/m^{3}. Calculate the volume, surface and diameter of the sphere. - Horizontal Cylindrical Segment

How much fuel is in the tank of horizontal cylindrical segment with a length 10m, width of level 1 meter and level is 0.2 meters below the upper side of the tank? - Vintner

How high can vintner fill keg with crushed red grapes if these grapes occupy a volume of 20 percent? Keg is cylindrical with a diameter of the base 1 m and a volume 9.42 hl. Start from the premise that says that fermentation will fill the keg (the number. - Triangular pyramid

It is given perpendicular regular triangular pyramid: base side a = 5 cm, height v = 8 cm, volume V = 28.8 cm^{3}. What is it content (surface area)?

Do you have an interesting mathematical word problem that you can't solve it? Enter it, and we can try to solve it.

Tip: Our volume units converter will help you with the conversion of volume units. See also more information on Wikipedia.