Three numbers

What is three numbers which have the property: the sum of the reciprocals of the first and second numbers is 12/7, the first and third 11/24 and the second and the third 3/8.

Result

a =  3
b =  4
c =  8

Solution:

Solution in text a =

A+B = 7/12
A+C = 11/24
B+C = 3/8

12A+12B = 7
24A+24C = 11
8B+8C = 3

A = 13 ≈ 0.333333
B = 14 = 0.25
C = 18 = 0.125

Calculated by our linear equations calculator.
Solution in text b =
Solution in text c =







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this verbal math problem are needed these knowledge from mathematics:

Do you have a system of equations and looking for calculator system of linear equations?

Next similar examples:

  1. Theorem prove
    thales_1 We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  2. Three workshops
    workers_24 There are 2743 people working in three workshops. In the second workshop works 140 people more than in the first and in third works 4.2 times more than the second one. How many people work in each workshop?
  3. Factory and divisions
    factory_2 The factory consists of three auxiliary divisions total 2,406 employees. The second division has 76 employees less than 1st division and 3rd division has 212 employees more than the 2nd. How many employees has each division?
  4. Three unknowns
    matrix_1 Solve the system of linear equations with three unknowns: A + B + C = 14 B - A - C = 4 2A - B + C = 0
  5. Lord Ram
    sheep When lord Ram founded the breed white sheep was 8 more than black. Currently white sheep are four times higher than at the beginning and black three times more than at the beginning. White sheep is now 42 more than the black. How many white and black sh
  6. Lee is
    clock-night-schr_15 Lee is 8 years more than twice Park's age, 4 years ago, Lee was three times as old. How old was Lee 4 years ago?
  7. Circus
    cirkus On the circus performance was 150 people. Men were 10 less than women and children 50 more than adults. How many children were in the circus?
  8. Tickets
    tickets Tickets to the zoo cost $4 for children, $5 for teenagers and $6 for adults. In the high season, 1200 people come to the zoo every day. On a certain day, the total revenue at the zoo was $5300. For every 3 teenagers, 8 children went to the zoo. How many te
  9. Savings
    penize_29 Paul has a by half greater savings than half Stanley, but the same savings as Radek. Staney save 120 CZK less than Radek. What savings have 3 boys together?
  10. Gasoline
    kanyster 35 l of gasoline is to be divided into four canisters so that in the third canister was 5 l less than the first canister, the fourth canister 10 l more than in the third canister and the second canister half what in the first canister. How many liters of.
  11. Legs
    rak Cancer has 5 pairs of legs. The insect has 6 legs. 60 animals have a total of 500 legs. How much more are cancers than insects?
  12. Antennas
    antenas If you give me two antennas will be same. If you give me again your two antenna I have a 5× so many than you. How many antennas have both mans?
  13. Candies
    bonbon If Alena give Lenka 3 candy will still have 1 more candy. If Lenka give Alena 1 candy Alena will hame twice more than Lenka. How many candies have each of them?
  14. Linsys2
    linear_eq_3 Solve two equations with two unknowns: 400x+120y=147.2 350x+200y=144
  15. Elimination method
    rovnice_1 Solve system of linear equations by elimination method: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  16. Two equations
    children_23 Solve equations (use adding and subtracting of linear equations): -4x+11y=5 6x-11y=-5
  17. Children
    children_3 The group has 42 children. There are 4 more boys than girls. How many boys and girls are in the group?