# Sequence 2

Write the first 5 members of an arithmetic sequence a

_{11}=-14, d=-1**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this verbal math problem are needed these knowledge from mathematics:

## Next similar examples:

- Sequence

Write the first 6 members of these sequence: a_{1}= 5 a_{2}= 7 a_{n+2}= a_{n+1}+2 a_{n} - Sequence

Write the first 7 members of an arithmetic sequence: a_{1}=-3, d=6. - Sequence 3

Write the first 5 members of an arithmetic sequence: a_{4}=-35, a_{11}=-105. - Trees

A certain species of tree grows an average of 0.5 cm per week. Write an equation for the sequence that represents the weekly height of this tree in centimeters if the measurements begin when the tree is 200 centimeters tall. - AP - simple

Find the first ten members of the sequence if a11 = 132, d = 3. - AP - simple

Determine the first nine elements of sequence if a10 = -1 and d = 4 - 6 terms

Find the first six terms of the sequence. a1 = 7, an = an-1 + 6 - AS sequence

In an arithmetic sequence is given the difference d = -3 and a_{71}= 455. a) Determine the value of a_{62}b) Determine the sum of 71 members. - Sequence

Between numbers 1 and 53 insert n members of the arithmetic sequence that its sum is 702. - Nineteenth member

Find the nineteenth member of the arithmetic sequence: a1=33 d=5 find a19 - Sum of members

What is the sum of the first two members of the aritmetic progression if d = -4.3 and a3 = 7.5? - Seats

Seats in the sport hall are organized so that each subsequent row has five more seats. First has 10 seats. How many seats are: a) in the eighth row b) in the eighteenth row - Third member

Determine the third member of the AP if a4=93, d=7.5. - Series

Your task is express the sum of the following arithmetic series for n = 14: S(n) = 11 + 13 + 15 + 17 + ... + 2n+9 + 2n+11 - Elimination method

Solve system of linear equations by elimination method: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15 - PIN - codes

How many five-digit PIN - code can we create using the even numbers? - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?