# Sphere from tree points

Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a

Result

e =  0

#### Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Math student
how can you write  r=a.(2/3)1/2
is this applicable for all plane equation?

Dr Math
We found some bugs in this problem, but I think now is OK solution:

(x+a)2 + (y+a)2+(z-3a)2 = 6 a2

#### To solve this verbal math problem are needed these knowledge from mathematics:

Looking for help with calculating roots of a quadratic equation? Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator.

## Next similar examples:

1. Clouds
From two points A and B on the horizontal plane was observed forehead cloud above the two points under elevation angle 73°20' and 64°40'. Points A , B are separated by 2830 m. How high is the cloud?
2. RT leg and perimeter
Calculate the length of the sides of a right triangle ABC with hypotenuse c when the length of a leg a= 84 and perimeter of the triangle o = 269.
3. Right triangle
Legs of right are in ratio a:b = 2:8. Hypotenuse has a length of 87 cm. Calculate the perimeter and area of the triangle.
4. Nice prism
Calculate the surface of the cuboid if the sum of its edges is a + b + c = 19 cm and the body diagonal size u = 13 cm.
5. Isosceles triangle
The perimeter of an isosceles triangle is 112 cm. The length of the arm to the length of the base is at ratio 5:6. Find the triangle area.
6. Angle in RT
Determine the size of the smallest internal angle of a right triangle whose sides constitutes sizes consecutive members of arithmetic progressions.
7. Diagonal 20
Diagonal pathway for the rectangular town plaza whose length is 20 m longer than the width. if the pathway is 20 m shorter than twice the width. How long should the pathway be?
8. Isosceles trapezoid
Calculate the content of an isosceles trapezoid whose bases are at ratio 5:3, the arm is 6cm long and it is 4cm high.
9. Right angled triangle
Hypotenuse of a right triangle is 17 cm long. When we decrease length of legs by 3 cm then decrease its hypotenuse by 4 cm. Determine the size of legs.
10. Touch x-axis
Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis.
11. Cuboid
Cuboid with edge a=16 cm and body diagonal u=45 cm has volume V=11840 cm3. Calculate the length of the other edges.
12. Right triangle Alef
The obvod of a right triangle is 84 cm, the hypotenuse is 37 cm long. Determine the lengths of the legs.
13. R triangle
Calculate the area of a right triangle whose longer leg is 6 dm shorter than the hypotenuse and 3 dm longer than the shorter leg.
14. Medians
Calculate the sides of a right triangle if the length of the medians to the legs are ta = 21 cm and tb=12 cm.
15. RT - hypotenuse and altitude
Right triangle BTG has hypotenuse g=117 m and altitude to g is 54 m. How long are hypotenuse segments?
16. Is right triangle
One angle of the triangle is 36° and the remaining two are in the ratio 3:5. Determine whether triangle is a rectangular triangle.
17. RTriangle 17
The hypotenuse of a right triangle is 17 cm. If you decrease both two legs by 3 cm you will reduce the hypotenuse by 4 cm. Determine the length of this legs.