Angle + scalar product - math problems

Number of problems found: 9

  • Angle of the body diagonals
    body_diagonals_angle Using vector dot product calculate the angle of the body diagonals of the cube.
  • Scalar dot product
    dot_product Calculate u.v if |u| = 5, |v| = 2 and when angle between the vectors u, v is: a) 60° b) 45° c) 120°
  • Angle between vectors
    arccos Find the angle between the given vectors to the nearest tenth of a degree. u = (-22, 11) and v = (16, 20)
  • Find the 10
    lines Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular, parallel, what angle does each of the lines make with the x-axis, find the angle between the lines?
  • Vector v4
    scalar_product Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1)
  • Decide 2
    vectors2 Decide whether points A[-2, -5], B[4, 3] and C[16, -1] lie on the same line
  • Cuboids
    3dvectors Two separate cuboids with different orientation in space. Determine the angle between them, knowing the direction cosine matrix for each separate cuboid. u1=(0.62955056, 0.094432584, 0.77119944) u2=(0.14484653, 0.9208101, 0.36211633)
  • Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D.
  • Triangle
    sedlo Plane coordinates of vertices: K[11, -10] L[10, 12] M[1, 3] give Triangle KLM. Calculate its area and its interior angles.

We apologize, but in this category are not a lot of examples.
Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.



We will send a solution to your e-mail address. Solved examples are also published here. Please enter the e-mail correctly and check whether you don't have a full mailbox.

Please do not submit problems from current active competitions such as Mathematical Olympiad, correspondence seminars etc...



Angle Problems. Scalar product - math word problems.