Circle + quadratic equation - math problems

Number of problems found: 31

  • A circle
    circle_eq A circle relation is given to be x2 + y2 =16. What is the radius of the circle?
  • Woman's day
    mdz We can easily make a heart for mothers for Woman's day by drawing two semicircles to the two upper sides of the square standing on their top. What is the radius of the circle circumscribed by this heart when the length of the side of the square is 1?
  • Intersections 3
    intersect_circles Find the intersections of the circles x2 + y2 + 6 x - 10 y + 9 = 0 and x2 + y2 + 18 x + 4 y + 21 = 0
  • Two chords
    ssa From the point on the circle with a diameter of 8 cm, two identical chords are led, which form an angle of 60°. Calculate the length of these chords.
  • Circle and square
    square_axes An ABCD square with a side length of 100 mm is given. Calculate the radius of the circle that passes through the vertices B, C and the center of the side AD.
  • Suppose
    linear_eq Suppose you know that the length of a line segment is 15, x2=6, y2=14 and x1= -3. Find the possible value of y1. Is there more than one possible answer? Why or why not?
  • Flowerbed
    circles We enlarge the circular flower bed, so its radius increased by 3 m. The substrate consumption per enlarged flower bed was (at the same layer height as before magnification) nine times greater than before. Determine the original flowerbed radius.
  • Radius
    circle_axes Find the radius of the circle with area S = 200 cm².
  • Two chords
    tetivy Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle.
  • Touch x-axis
    touch_circle Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis.
  • Ratio of sides
    described_circle2 Calculate the area of a circle with the same circumference as the circumference of the rectangle inscribed with a circle with a radius of r 9 cm so that its sides are in ratio 2 to 7.
  • RT sides
    described_circle_right_triangle Find the sides of a rectangular triangle if legs a + b = 17cm and the radius of the written circle ρ = 2cm.
  • Find parameters
    circle_axes Find parameters of the circle in the plane - coordinates of center and radius: ?
  • Distance problem
    linear_eq A=(x, x) B=(1,4) Distance AB=√5, find x;
  • Prove
    two_circles Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0
  • Find radius
    numbers Find the radius of the circle using the Pythagorean theorem where a=9, b=r, c= 6+r
  • A bridge
    arc123 A bridge over a river has the shape of the arc with bases of the bridge at the river's edge. At the center of the river, the bridge is 10 feet above the water. At 27 feet from the edge of the river, the bridge is 9 feet above the water. How wide is the ri
  • Right-angled triangle
    tr Determine the content of a right triangle whose side lengths form successive members of an arithmetic progression and the radius of the circle described by the triangle is 5 cm.
  • Equation of circle 2
    circle_axes Find the equation of a circle that touches the axis of y at a distance of 4 from the origin and cuts off an intercept of length 6 on the axis x.
  • MO SK/CZ Z9–I–3
    ball_floating_water John had the ball that rolled into the pool, and it swam in the water. Its highest point was 2 cm above the surface. The diameter of the circle that marked the water level on the surface of the ball was 8 cm. Find the diameter of John ball.

Do you have an exciting math question or word problem that you can't solve? Ask a question or post a math problem, and we can try to solve it.



We will send a solution to your e-mail address. Solved examples are also published here. Please enter the e-mail correctly and check whether you don't have a full mailbox.



Looking for help with calculating roots of a quadratic equation? Circle Problems. Quadratic Equations Problems.