Derivation + minimum - math problems

Number of problems found: 13

  • Minimum of sum
    derive_1 Find a positive number that the sum of the number and its inverted value was minimal.
  • Sphere in cone
    sphere-in-cone A sphere of radius 3 cm describes a cone with minimum volume. Determine cone dimensions.
  • Ladder
    rebrik_4 4 m long ladder touches the cube 1mx1m at the wall. How high reach on the wall?
  • Cylindrical container
    valec2_6 An open-topped cylindrical container has a volume of V = 3140 cm3. Find the cylinder dimensions (radius of base r, height v) so that the least material is needed to form the container.
  • Sphere and cone
    cone_in_sphere Within the sphere of radius G = 33 cm inscribe the cone with the largest volume. What is that volume, and what are the dimensions of the cone?
  • Cone
    diag22 Into rotating cone with dimensions r = 8 cm and h = 8 cm incribe cylinder with maximum volume so that the cylinder axis is perpendicular to the axis of the cone. Determine the dimensions of the cylinder.
  • Statue
    michelangelo On the pedestal high 4 m is statue 2.7 m high. At what distance from the statue must observer stand to see it in maximum viewing angle? Distance from the eye of the observer from the ground is 1.7 m.
  • Derivative problem
    derive The sum of two numbers is 12. Find these numbers if: a) The sum of their third powers is minimal. b) The product of one with the cube of the other is maximal. c) Both are positive and the product of one with the other power of the other is maximal.
  • Curve and line
    parabol The equation of a curve C is y=2x² -8x+9 and the equation of a line L is x+ y=3 (1) Find the x co-ordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C?
  • Paper box
    box Hard rectangular paper has dimensions of 60 cm and 28 cm. The corners are cut off equal squares and the residue was bent to form an open box. How long must be side of the squares to be the largest volume of the box?
  • Secret treasure
    max_cylinder_pyramid Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure.
  • The shooter
    terc The shooter shoots at the target, assuming that the individual shots are independent of each other and the probability of hitting each of them is 0.2. The shooter fires until he hits the target for the first time, then stop firing. (a) What is the most li
  • Shopping malls
    tv The chain of department stores plans to invest up to 24,000 euros in television advertising. All commercials will be placed on a television station where the broadcast of a 30-second spot costs EUR 1,000 and is watched by 14,000 potential customers, durin

We apologize, but in this category are not a lot of examples.
Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.



We will send a solution to your e-mail address. Solved examples are also published here. Please enter the e-mail correctly and check whether you don't have a full mailbox.

Please do not submit problems from current active competitions such as Mathematical Olympiad, correspondence seminars etc...