# Prism + Pythagorean theorem - math problems

#### Number of problems found: 52

- Right-angled triangle base

Find the volume and surface area of a triangular prism with a right-angled triangle base if the length of the prism base legs are 7.2 cm and 4.7 cm and the height of a prism is 24 cm. - Regular square prism

The volume of a regular square prism is 192 cm^{3}. The size of its base edge and the body height is 1: 3. Calculate the surface of the prism. - Diagonals of a prism

The base of the square prism is a rectangle with dimensions of 3 dm and 4 dm. The height of the prism is 1 m. Find out the angle between the body diagonal with the diagonal of the base. - Isosceles + prism

Calculate the volume of the perpendicular prism if its height is 17.5 cm and the base is an isosceles triangle with a base length of 5.8 cm and an arm length of 3.7 cm - Total area

Calculate the total area (surface and bases) of a prism whose base is a rhombus which diagonals of 12cm and 18cm and prism height are 10 cm. - Quadrilateral prism

The height of a regular quadrilateral prism is v = 10 cm, the deviation of the body diagonal from the base is 60°. Determine the length of the base edges, the surface, and the volume of the prism. - The regular

The regular triangular prism has a base in the shape of an isosceles triangle with a base of 86 mm and 6.4 cm arms, the height of the prism is 24 cm. Calculate its volume. - Triangular prism

The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm^{3}? And the surface cm^{2}? - Regular hexagonal prism

Calculate the volume of a regular hexagonal prism whose body diagonals are 24cm and 25cm long. - Triangular prism

Calculate the surface of a regular triangular prism, the edges of the base are 6 cm long and the height of the prism is 15 cm. - Wall and body diagonals

The block/cuboid has dimensions a = 4cm, b = 3cm and c = 12cm. Calculates the length of the wall and body diagonals. - Embankment

The railway embankment 300 m long has a cross-section of an isosceles trapezoid with bases of 14 m and 8 m. The trapezoidal arms are 5 m long. Calculate how much m^{3}of soil is in the embankment? - Triangular prism - regular

The regular triangular prism is 7 cm high. Its base is an equilateral triangle whose height is 3 cm. Calculate the surface and volume of this prism. - Triangular prism

The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism. - Triangular prism,

The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm^{3}(l). - Three faces of a cuboid

The diagonal of three faces of a cuboid are 13,√281, and 20 units. Then the total surface area of the cuboid is. - Hexagon

Calculate the regular hexagonal prism's surface whose base edge a = 12cm and side edge b = 3 dm. - Cuboid face diagonals

The lengths of the cuboid edges are in the ratio 1: 2: 3. Will the lengths of its diagonals be the same ratio? The cuboid has dimensions of 5 cm, 10 cm, and 15 cm. Calculate the size of the wall diagonals of this cuboid. - Body diagonal

Calculate the volume of a cuboid whose body diagonal u is equal to 6.1 cm. Rectangular base has dimensions of 3.2 cm and 2.4 cm - Faces diagonals

If a cuboid's diagonals are x, y, and z (wall diagonals or three faces), then find the cuboid volume. Solve for x=1.3, y=1, z=1.2

Do you have an exciting math question or word problem that you can't solve? Ask a question or post a math problem, and we can try to solve it.

Pythagorean theorem is the base for the right triangle calculator. Prism Problems. Pythagorean theorem - math problems.