# Right triangle - 9th grade (14y) - math problems

#### Number of problems found: 631

- Trapezoid 25

Trapezoid PART with AR||PT has (angle P=x) and (angle A=2x) . In addition, PA = AR = RT = s. Find the length of the median of Trapezoid PART in terms of s. - The staircase

The staircase has a total height of 3.6 m and forms an angle of 26° with the horizontal. Calculate the length of the whole staircase. - Ladder

How long is a ladder that touches on a wall 4 meters high and its lower part is 3 meters away from the wall? - Railway embankment

The section of the railway embankment is an isosceles trapezoid, the sizes of the bases of which are in the ratio 5: 3. The arms have a length of 5 m and the height of the embankment is 4.8 m. Calculates the size of the embankment section area. - The pyramid

The pyramid with a square base is 50 m high and the height of the sidewall is 80 m. Find the endge of the base of the pyramid. - Isosceles triangle

Calculate the area of an isosceles triangle, the base of which measures 16 cm and the arms 10 cm. - Right triangle

A right triangle ABC is given, c is a hypotenuse. Find the length of the sides a, b, the angle beta if c = 5 and angle alfa = A = 35 degrees. - Powerplant chimney

From the window of the building at a height of 7.5 m, the top of the factory chimney can be seen at an altitude angle of 76° 30 ′. The base of the chimney can be seen from the same place at a depth angle of 5° 50 ′. How tall is the chimney? - Trip with compass

During the trip, Peter went 5 km straight north from the cottage, then 12 km west and finally returned straight to the cottage. How many kilometers did Peter cover during the whole trip? - Right angle

In a right triangle ABC with a right angle at the apex C, we know the side length AB = 24 cm and the angle at the vertex B = 71°. Calculate the length of the legs of the triangle. - The cable car

The cable car is 2610 m long and rises at an angle of 35°. Calculate the height difference between the lower and upper station of the cable car. - Sailing

Solve the following problem graphically. The fishing boat left the harbor early in the morning and set out to the north. After 12 km of sailing, she changed course and continued 9 km west. Then When she docked and reached the fishing grounds she launched - Right triangle - ratio

The lengths of the legs of the right triangle ABC are in ratio b = 2: 3. The hypotenuse is 10 cm long. Calculate the lengths of the legs of that triangle. - The right triangle

In the right triangle ABC with right angle at C we know the side lengths AC = 9 cm and BC = 7 cm. Calculate the length of the remaining side of the triangle and the size of all angles. - Isosceles triangle

Calculate the size of the interior angles and the length of the base of the isosceles triangle if the length of the arm is 17 cm and the height to the base is 12 cm. - TV tower

Calculate the height of the television tower if an observer standing 430 m from the base of the tower sees the peak at an altitude angle of 23°? - Telegraph poles

The bases of two adjacent telegraph poles have a height difference of 10.5 m. How long do the wires connect the two poles if the slope is 39° 30´? - Diamond area from diagonals

In the diamond ABCD is AB = 4 dm and the length of the diagonal is 6.4 dm long. What is the area of the diamond? - Height of pyramid

The pyramid ABCDV has edge lengths: AB = 4, AV = 7. What is its height? - Circle and square

An ABCD square with a side length of 100 mm is given. Calculate the radius of the circle that passes through the vertices B, C and the center of the side AD.

Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.

See also our right triangle calculator.