# The Law of Sines + The Law of Cosines - math problems

#### Number of problems found: 8

- Laws

From which law follows directly the validity of Pythagoras' theorem in the right triangle? ? - ABCD

AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD - Largest angle of the triangle

Calculate the largest angle of the triangle whose sides have the sizes: 2a, 3/2a, 3a - Children playground

The playground has a trapezoid shape, and the parallel sides have a length of 36 m and 21 m. The remaining two sides are 14 m long and 16 m long. Find the size of the inner trapezoid angles. - Viewing angle

The observer sees a straight fence 60 m long at a viewing angle of 30°. It is 102 m away from one end of the enclosure. How far is the observer from the other end of the enclosure? - Triangle's centroid

In the triangle ABC the given lengths of its medians tc = 9, ta = 6. Let T be the intersection of the medians (triangle's centroid) and point is S the center of the side BC. The magnitude of the CTS angle is 60°. Calculate the length of the BC side to 2 d - Aircraft bearing

Two aircraft will depart from the airport at the same time, the first with a course of 30° and the second with a course of 86°. Both fly at 330 km/h. How far apart will they be in 45 minutes of flight? - Inner angles

The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.

We apologize, but in this category are not a lot of examples.

Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.

Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.