Výpočet trojuholníka - výsledok
Tupouhlý rôznostranný trojuholník.
Dĺžky strán trojuholníka:a = 4,05663979069
b = 5,07704973836
c = 7
Obsah trojuholníka: S = 10,14109947671
Obvod trojuholníka: o = 16,12768952904
Semiperimeter (poloobvod): s = 8,06334476452
Uhol ∠ A = α = 34,8549904579° = 34°51' = 0,60882455789 rad
Uhol ∠ B = β = 45,58546914028° = 45°35'5″ = 0,79656029535 rad
Uhol ∠ C = γ = 99,56554040181° = 99°33'55″ = 1,73877441212 rad
Výška trojuholníka na stranu a: va = 5
Výška trojuholníka na stranu b: vb = 4
Výška trojuholníka na stranu c: vc = 2,89774270763
Ťažnica: ta = 5,7665533875
Ťažnica: tb = 5,12883229286
Ťažnica: tc = 2,97218939833
Polomer vpísanej kružnice: r = 1,25876499797
Polomer opísanej kružnice: R = 3,54993481685
Súradnice vrcholov: A[7; 0] B[0; 0] C[2,83988871616; 2,89774270763]
Ťažisko: T[3,28796290539; 0,96658090254]
Súradnice stredu opísanej kružnice: U[3,5; -0,59898071051]
Súradnice stredu vpísanej kružnice: I[2,99329502616; 1,25876499797]
Vonkajšie uhly trojuholníka:
∠ A' = α' = 145,1550095421° = 145°9' = 0,60882455789 rad
∠ B' = β' = 134,41553085972° = 134°24'55″ = 0,79656029535 rad
∠ C' = γ' = 80,43545959819° = 80°26'5″ = 1,73877441212 rad
Vypočítať ďaľší trojuholník
Ako sme vypočítali tento trojuholník?
Výpočet trojuholníka prebieha v dvoch fázach. Prvá fáza je taká, že zo vstupných parametrov sa snažíme vypočítať všetky tri strany trojuholníka. Prvá fáza prebieha rôzne pre rôzne zadané trojuholníky. Druhá fáza je vlastne výpočet ostatných charakteristík trojuholníka (z už vypočítaných strán, preto SSS), ako sú uhly, plocha, obvod, výšky, ťažnice, polomery kružníc atď. Niektoré vstupné vstupné údaje vedú aj v dvom až trom správnym riešeniam trojuholníka (napr. ak je zadaný obsah trojuholníka a dve strany - výsledkom je typicky ostrouhlý a aj tupouhlý trojuholník).1. Zadané vstupné údaje: strana c, výška va a výška vb.
c=7 va=5 vb=4
2. Z úhla β, úhla γ a strany c vypočítame stranu b - Použitím sínusovej vety vypočítame neznámu stranu b:
cb=sinγsinβ b=c⋅ sinγsinβ b=7⋅ sin99°33′55"sin45°35′5"=5,07
3. Zo strany b a úhla α vypočítame výšku vc:
vc=bsinα=5,07 sin34°51′=2,897
4. Z výšky vb a úhla γ vypočítame stranu a:
sinγ=vb:a a=sinγvb=sin99°33′55"4=4,056
Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený. Ďalej preto výpočet je rovnaký a dopočítajú sa ďaľšie jeho vlastnosti - vlastne výpočet trojuholníka zo známych troch strán (SSS).
a=4,06 b=5,07 c=7
5. Obvod trojuholníka je súčtom dĺžok jeho troch strán
o=a+b+c=4,06+5,07+7=16,13
6. Polovičný obvod trojuholníka
Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.s=2o=216,13=8,06
7. Obsah trojuholníka pomocou Herónovho vzorca
Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.S=s(s−a)(s−b)(s−c) S=8,06(8,06−4,06)(8,06−5,07)(8,06−7) S=102,84=10,14
8. Výpočet výšiek trojuholníku z jeho obsahu.
Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.S=2ava va=a2 S=4,062⋅ 10,14=5 vb=b2 S=5,072⋅ 10,14=4 vc=c2 S=72⋅ 10,14=2,9
9. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety
Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.a2=b2+c2−2bccosα α=arccos(2bcb2+c2−a2)=arccos(2⋅ 5,07⋅ 75,072+72−4,062)=34°51′ b2=a2+c2−2accosβ β=arccos(2aca2+c2−b2)=arccos(2⋅ 4,06⋅ 74,062+72−5,072)=45°35′5" γ=180°−α−β=180°−34°51′−45°35′5"=99°33′55"
10. Polomer vpísanej kružnice
Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.S=rs r=sS=8,0610,14=1,26
11. Polomer opísanej kružnice
Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.R=4 rsabc=4⋅ 1,258⋅ 8,0634,06⋅ 5,07⋅ 7=3,55
12. Výpočet ťažníc
Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.ta=22b2+2c2−a2=22⋅ 5,072+2⋅ 72−4,062=5,766 tb=22c2+2a2−b2=22⋅ 72+2⋅ 4,062−5,072=5,128 tc=22a2+2b2−c2=22⋅ 4,062+2⋅ 5,072−72=2,972
Vypočítať ďaľší trojuholník