Ručičky na hodinách

Ručičky na hodinách ukazujú čas 12 hodín a 2 minúty. Vypočítaj veľkosť ostrého uhla, ktorý budú zvierať o 3 hodiny neskôr.

Výsledok

x =  79 °

Riešenie:

12:02+3:00=15:02=03:02 x=(3+2/60)/123602/60360 x=(3+2/60)3026=79=7912:02+3:00 = 15:02 = 03:02 \ \\ x = (3+2/60)/12\cdot 360 - 2/60\cdot 360 \ \\ x = (3+2/60)\cdot 30 -2 \cdot 6 = 79 ^\circ = 79^\circ



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:

Potrebujete pomôcť spočítať, vykrátiť či vynásobiť zlomky? Skúste našu zlomkovú kalkulačku. Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?

Ďaľšie podobné príklady a úlohy:

  1. Hodiny
    hodiny Koľkokrát za deň sa ručičky na hodinách prekryjú?
  2. Ručičky
    soviet_watch Hodiny ukazujú 12 hodín. Po koľkých minútach sa bude zvierania uhol medzi hodinovou a minútovou ručičkou 70°? Uvažujte kontinuálny pohyb oboch ručičiek hodín.
  3. Pomer uhlov
    3angle_1 V trojuholníku ABC platí vzťah c menšie ako b a b menšie ako a. Vnútorne uhly trojuholníka sú v pomere 5:4:9. Veľkosť vnútorného uhla beta je:
  4. Najmenší uhol
    triangles_10 Určte veľkosť najmenšieho vnútorného uhla pravouhlého trojuholníka, ktorého veľkosti strán tvorí po sebe idúce členy aritmetickej postupnosti.
  5. Rieka
    river Z pozorovateľne 15 m vysokej a vzdialenej 26 m od brehu rieky sa javí šírka rieky v zornom uhle φ = 20°. Vypočítajte šírku rieky.
  6. Štvrťkruh II
    quartes_circle Vypočítajte polomer štvrťkruhu, ktorého obsah sa rovná kruhu s polomerom r=39 cm.
  7. N-uholník
    ngon_1 Gabo si narysoval n-uholník, ktorého veľkosti uhlov tvoria za sebou idúce členy aritmetickej postupnosti. Najmenší z nich bol 20° a najväčší 160°. Koľko strán má Gabov n-uholník?
  8. Uhly v pomere
    angles Daný je trojuholník ABC. Veľkosti vnútorných uhlov alfa, beta sú v pomere 4:7. Uhol gama je väčší ako uhol alfa o jednu štvrtinu z priameho uhla. Urč uhly trojuholníka ABC.
  9. Uhly štvoruholníka
    4uhelnik Ako veľké sú uhly štvoruholníka, ak sú v pomere 8: 9: 10: 13?
  10. Pozorovateľ
    ohrada Pozorovateľ vidí priamu ohradu dlhú 20 m v zornom uhle 30°. Od jedného konca ohrady je vzdialený 34 m. Ako ďaleko je od druhého konca ohrady?
  11. Radiány
    pi_text Preveď 198° na radiány. Výsledok uveď ako násobok čísla π.
  12. Štvrťkruh
    quarter_circle Drôt, ktorý je zahnutý po obvode štvrťkruhu má dĺžku 3π+12. Určite polomer štvťkruhu.
  13. Koza - kruhy
    equation_nonlinear Aký je polomer kružnice, ktorá má stred na inej kružnici a prienik oboch kruhov je rovný polovici plochy prvej kružnice? Táto úloha je matematickým vyjadrením úlohy z poľnohospodárstva. Sedliak má kruhový pozemok, na ktorom sa pasie koza. Pretože sedliak.
  14. Kruhový výsek
    vysek_circle Mám kruhový výsek s dĺžkou 15 cm a s neznámym stredovým uhlom. V ňom je vpísaná kružnica s polomerom 5 cm. Aký je stredový uhol alfa v kruhovom výseku?
  15. Trojuholník - uhly
    triangles_16 Vnútorné uhly v trojuholníku sú 1:4:5 Aký je to trojuholník?
  16. V oblakoch
    cloud Z dvoch miest A a B na vodorovnej rovine bolo pozorované čelo mraku nad spojnicou obidvoch miest pod výškovým uhlom 73°20' a 64°40'. Miesta A a B sú od seba vzdialené 2830 m. Ako vysoko je mrak?
  17. Tieň
    tree2_1 Strom kolmý k vodorovnému povrchu vrhá tieň 8,32 m. Súčasne metrová tyč kolmá k vodorovnému povrchu má dĺžku tieňa 64 cm. Ako je vysoký strom?