Betka

Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu.
Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skladalo sa iba z cifier mysleného čísla (avšak nemuselo obsahovať všetky jeho cifry). Erike sa Betkino číslo zapáčilo a chcela nájsť iné číslo s rovnakými vlastnosťami. Zistila, že neexistuje menšie také číslo ako
Betkino a väčšie sa jej hľadať nechcelo. Určte, aké číslo si myslela Betka a aké číslo by mohla nájsť Erika, keby mala viac trpezlivosti.

Výsledok

b =  1032
e =  2301

Riešenie:

1032+2301=33331032 + 2301 = 3333



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 1 komentár:
#
Peter2
Nápoveda. Zvážte postupne možnosti, kedy je myslené číslo jednomiestne, dvojmiestne atď. V jednotlivých prípadoch premýšľajte postupne nad možnými súčty na mieste jednotiek, desiatok atď.

Možné riešenie. Najprv nájdeme Betkine  číslo, tj. najmenšie číslo s uvedenými vlastnosťami.
1) Predpokladajme, že Betkine číslo je jednomiestne, a označíme si ich a. Potom by podľa zadania muselo platiť a + a = a, čo platí len v prípade a = 0. Nula však nie je prirodzené číslo, takže Betkine myslenej číslo nemôže byť jednomiestne.
2) Predpokladajme, že Betkine číslo je dvojmiestne, a označíme si ich ab. Či už súčet ab + ba dopadne akokoľvek, na mieste jednotiek čítame buď b + a = a, alebo b + a = b. Odtiaľ dostávame buď b = 0, alebo a = 0. V takom prípade by však buď číslo ba, alebo číslo ab nebolo dvojciferné. Betkine myslené číslo teda nemôže byť dvojmiestne.
3) Predpokladajme, že Betkine číslo je trojmiestne, a označíme si ich abc. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aac nuly, teda v súčte abc + cba sa na mieste jednotiek môže objaviť jedine b:
a b c
c b a
____
* * b
Súčasne c + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abc + cba nebol trojmiestny. Odtiaľ sa dozvedáme, že a + c = b čo okrem iného znamená, že ani číslica b nemôže byť 0. Odtiaľ vyplýva, že súčet b + b na mieste desiatok nemôže byť menšia ako 10; v takom prípade by tento súčet bol rovný jednému z čísel a, b, c, čo vždy vedie k nejakému sporu s predchádzajúcimi poznatkami:
Ak b + b = a alebo b + b = c, potom podľa (1) dostávame 2a + 2c = a alebo 2a + 2c = c, teda a = -2C alebo c = -2a, čo nie je možné.
• Ak b + b = b, potom b = 0, čo nie je možné.
Súčet b + b na mieste desiatok však nemôže byť ani väčšia než 9. V takom prípade by súčet na mieste stoviek bol a + c + 1 a toto číslo má byť presne jednému z čísel a, b, c; to vždy vedie k nejakému sporu:
• Ak a + c + 1 = a alebo a + c + 1 = c, potom c = -1 alebo a = -1, čo nie je možné.
• Ak a + c + 1 = b, potom podľa (1) dostávame b + 1 = b, teda 1 = 0, čo nie je možné.
Betkine myslené číslo teda nemôže byť ani trojmiestne.
4) Predpokladajme, že Betkine číslo je štvormiestne, a označíme si ich abcd. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aad nuly, teda v súčte abcd + dcba sa na mieste jednotiek môže objaviť buď b, alebo c:
a b c d
d c b a
----------
* * * b

a b c d
d c b a
----------
* * * c
Súčasne d + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abcd + DCBA nebol štvormiestny. Odtiaľ sa dozvedáme, že
buď a + d = b, (dalej len 2)
alebo a + d = c. (dalej len 3)
To okrem iného znamená, že buď b <> 0, alebo c <> 0.
Teraz predpokladáme, že súčet c + b na mieste desiatok je menšia ako 10, tzn. tento súčet je rovný jednému z čísel a, b, c, d, a preskúmame jednotlivé prípady. Najprv uvažujme platnosť (2), a teda b <> 0:
• Ak b + c = a alebo b + c = d, potom podľa (2) dostávame a + d + c = a alebo a + d + c = d, teda c = -d alebo c = -a, čo nie je možné .
• Ak b + c = b, potom c = 0 (čo ničomu nevadí).
• Ak b + c = c, potom b = 0, čo nie je možné.
Podobne, za predpokladu (3) zistíme, že jediná prípustná možnosť je b + c = c, teda b = 0
Celkom tak objavujeme dva možné prípady:
a b 0 d
d 0 b a
----------
b b b b
a 0 c d
d c 0 a
----------
c c c c
Pretože Betkine číslo je najmenšie číslo vyhovujúce všetkým uvedeným podmienkam, vôbec sa nemusíme zaoberať prípadom, kedy súčet c + b je väčší ako 9, a sústredíme sa výhradne na druhú z vyššie menovaných možností, tj. B = 0. Dosadíme najmenšie možné číslo na miesto tisícok a = 1 a zisťujeme, že c = d + 1. Najmenší vyhovujúce možnosť je d = 2 ac = 3. Betka si teda hrala s číslom 1032 a jej výpočet vyzeral takto:
1 0 3 2
2 3 0 1
----------
3 3 3 3
Z vyššie uvedeného je teraz jednoduché doplniť nejaké iné číslo s uvedenými vlastnosťami, teda nejaké Eričino číslo. Napr. stačí v Bětčině čísle zameniť číslica na mieste jednotiek a tisícoviek alebo číslice na mieste desiatok a stoviek, príp. uvažovať akékoľvek čísla tvaru (4). Medzi možnými riešeniami sú tiež čísla, kedy súčet c + b je väčšia než 9. Tu je niekoľko riešení, na ktoré mohla Erika prísť, keby nebola však tak netrpezlivá:
1 0 4 3
3 4 0 1
----------
4 4 4 4
1 3 0 2
2 0 3 1
----------
3 3 3 3
1 8 9 7
7 9 8 1
----------
9 8 7 8
Poznámky. a) Ak vieme zdôvodniť, že hľadané Betkine číslo musí byť aspoň štvormiestne, potom je možné ľahko nájsť skúšaním:
Najmenšie štvormiestne číslo s navzájom rôznymi číslicami je 1023. Toto číslo však nie je riešením, pretože 1023 + 3201 = 4224. Ak nás napadne prehodiť číslica 2 a 3, dostaneme vyhovujúce riešenie: 1032 + 2301 = 3333. Aby sme sa presvedčili, že toto riešenie je najmenšie možné, stačí overiť, že žiadne číslo medzi 1023 a 1032 nevyhovuje niektoré z uvedených podmienok.
b) Nahradenie ostatných úvah skúšaním je tiež možné, avšak často veľmi prácné. Avšak ak je riešenie založené na skúšaní úplné, nech je považované za správne.
Akékoľvek čiastkové všeobecné postrehy môžu počet možností k preskúšaniu zaujímavo znižovať (napr. Počet trojíc rôznych čísiel od 1 do 9 vyhovujúcich rovnosti (1) určite nie je väčší ako 32.

avatar









Ďaľšie podobné príklady a úlohy:

  1. Z9-I-4
    numbers_30 Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devä
  2. Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  3. Vláčik
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným vag
  4. Osemsten súčet
    8sten Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré.
  5. Stonožka
    mnohonozky.JPG Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na.
  6. Šťastný deň
    calendar_1 Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň j
  7. Komora
    socks V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich pr
  8. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  9. Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  10. Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n ak
  11. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 rovnakých kociek syra. Najskôr si z nich poskladala veľkú kocku a chvíľu počkala, než sa syrové kocôčky k sebe prilepili. Potom z každej steny veľkej kocky vyhryzie strednú kocôčku. Potom zjedla aj kocôčky, ktorá bola v stredu veľkej.
  12. Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  13. Pán Baran
    sheep Keď pán Baran zakladal chov, mal bielych ovcí o 8 viac nez čiernych. V súčasnosti má bielych ovcí štyrikrát viac ako na začiatku a čiernych trikrát viac ako na začiatku. Bielych oviec je teraz o 42 viac než čiernych. Koľko teraz pán Baran chová bielych a č
  14. Lichobežník MO-5-Z8
    lichobeznik_mo_z8 Lichobežník ABCD je úsečkou CE rozdelený na trojuholník a rovnobežník, viď obrázok. Bod F je stredom úsečky CE, priamka DF prechádza stredom úsečky BE a obsah trojuholníka CDE je 3 cm2. Určte obsah lichobežníka ABCD.
  15. Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klára
  16. Z9–I–2
    map_mo Z bodu A do bodu C vedie náučný chodník prechádzajúci bodom B a inakadiaľ tiež červená turistická značka, pozri obrázok. Okrem toho sa dá použiť aj nezakreslená skratka dlhá 1500 metrov začínajúca v A a ústiaca na náučnom chodníku. Vojtech zistil, že • vý
  17. Osem kvádrov
    cuboids Dana mala za úlohu uložiť osem kvádrov podľa týchto pravidiel: 1. Medzi dvoma červenými kvádre musí byť jeden inej farby. 2. Medzi dvoma modrými musia byť dva iné farby. 3. Medzi dvoma zelenými musia byť tri inej farby. 4. Medzi dvoma žltými kvádre musia.