Goniometrické funkcie

Pre pravouhlý trojuholník plati:

 tg α=75\text{ tg} \ \alpha = \dfrac{ 7} 5


Určite hodnoty s, c aby platilo:

 sin α=s74\text{ sin } \alpha = \dfrac{ s} { \sqrt{ 74 }}

 cos α=c74\text{ cos } \alpha = \dfrac{ c} { \sqrt{ 74 }}




Výsledok

s =  7
c =  5

Riešenie:

 tg α=75=ab  sin α=ac=aa2+b2=774\text{ tg} \ \alpha = \dfrac{ 7} { 5} = \dfrac{ a }{ b } \ \\ \text{ sin} \ \alpha = \dfrac{ a} {c} = \dfrac{ a} { \sqrt{ a^2+b^2}} = \dfrac{ 7 } { \sqrt{ 74 }}
 cos α=bc=ba2+b2=574\text{ cos} \ \alpha = \dfrac{ b} {c} = \dfrac{ b} { \sqrt{ a^2+b^2}} = \dfrac{ 5 } { \sqrt{ 74 }}



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby, ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlite. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Tipy na súvisiace online kalkulačky
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 

 

 

 

Ďaľšie podobné príklady a úlohy:

  1. Vrtuľník
    helicopter Záchranársky vrtuľník je nad miestom pristátia vo výške 180m. Miesto záchrannej akcie je odtiaľto vidieť pod hĺbkovým uhlom 52° 40 '. Ako ďaleko pristane vrtuľník od miesta záchranárske akcie?
  2. Stúpanie 7
    train_freight Priama železničná trať má stúpanie 16 promile. Akú veľkosť má uhol stúpania?
  3. Uhly Alfa
    123_triangle Uhly Alfa beta Gama v trojuholníku ABC sú v pomere 1: 2:3. zisti veľkosti uhlov a určí aký je to trojuholník.
  4. V trojuholníku
    triangles_1 V trojuholníku je pomer strán a: c 3: 2 a a:b 5:4. Obvod trojuholníka je 74cm. Vypočítaj dĺžky jednotlivých strán.
  5. Trojuholník 49
    triangles_1 Trojuholník KLM ma dĺžku strán k=6,3cm, l=8,1cm, m=11,1cm. Trojuholník XYZ ma dĺžku strán x=8,4cm, y= 10,8cm, z= 14,8cm. Sú trojuholníku KLM aXYZ podobne? (zapíš 0 ak nie, ak áno, nájdi a zapíš koeficient podobnosti)
  6. Na základe
    angles Na základe toho, že poznáte hodnoty sin a cos daného uhla a viete, že tg je ich podiel určte d) tg 120° e) tg 330°
  7. Dekanon
    decanon Vypočítajte obvod a obsah pravidelného 10 uholníka ak polomer opísanej kružnice r = 20 cm.
  8. Základne 3
    rr_lichobeznik Základne rovnoramenného lichobežníka ABCD majú dĺžky 10 cm a 6 cm. Jeho ramená zvierajú s dlhšou základňou uhol α = 50˚. Vypočítajte obvod a obsah lichobežníka ABCD.
  9. Pravouhlý trojuholník
    rt_tr540 Pravouhlý trojuholník ABC má odvesnu a = 36 cm a obsah S = 540 cm2. Vypočítaj dĺžku odvesny b a ťažnicu tb.
  10. Medzikružie
    annulus2 Vypočítajte obsah plochy medzi kružnicou opísanou a kružnicu vpísanou trojuholníku o stranách a = 25mm, b = 29mm, c = 36mm
  11. Šarkan 6
    sarkan Deti majú šarkana na šnúre dlhej 80m, ktorý sa vznáša nad miestom vzdialenom 25m od miesta kde stoja deti. Ako vysoko sa vznáša drak nad terénom?
  12. Vypočítaj 50
    345 Vypočítaj zvyšné strany pravouhlého trojuholníka ak poznáš b= 4cm a vc = 2,4cm.
  13. Veľkosť výšky
    triangle Obsah trojuholníka je 35 cm ^ 2. Veľkosť základne je 10 cm. Určte veľkosť výšky na základňu.
  14. Dve úlohy
    piesokHrad Detské pieskovisko má tvar trojuholníka, dve strany merajú rovnako 3 metre a posledná má 50 dm. Vypočítajte obvod detského pieskoviska v mm. Detská formička je tvaru trojuholníka so všetkými troma stranami rovnakej dĺžky 29 mm. Akú dlhú čiaru nakreslí Z
  15. Kvetinový 4
    zahon Kvetinový záhon tvaru štvorca má na svojich troch stranách vysadený živý plot dĺžky 27m. Vypočítaj obvod celého záhonu
  16. Dané sú 2
    triangle1 Dané sú trojuholníky KLM a ABC, ktoré sú navzájom podobné. Dopočítaj dĺžky zvyšných strán trojuholníka KLM, ka dĺžky trán sú a=7 b=5.6 c=4.9 k=5
  17. Hodinový ciferník
    clocks Daný je hodinový ciferník. Vypočítajte veľkosť vnútorných uhlov trojuholníka, ktorého vrcholy ležia na ciferníku v bodoch 2, 6, 11.