V kocke

V kocke s dĺžkou hrany 12 dm máme vpísaný ihlan s vrcholom v strede hornej steny kocky. Vypočítajte objem a povrch tohto ihlanu.

Výsledok

V =  576 dm3
S =  465.994 dm2

Riešenie:

a=12 h=12 V=a2 h/3=122 12/3=576=576 dm3a = 12 \ \\ h = 12 \ \\ V = a^2 \cdot \ h/3 = 12^2 \cdot \ 12/3 = 576 = 576 \ dm^3
h2=h2+(a/2)2=122+(12/2)2=6 513.4164 S2=a h2/2=12 13.4164/2=36 580.4984 S=a2+4 S2=122+4 80.4984465.9938=465.994 dm2h_{ 2 } = \sqrt{ h^2+(a/2)^2 } = \sqrt{ 12^2+(12/2)^2 } = 6 \ \sqrt{ 5 } \doteq 13.4164 \ \\ S_{ 2 } = a \cdot \ h_{ 2 }/2 = 12 \cdot \ 13.4164/2 = 36 \ \sqrt{ 5 } \doteq 80.4984 \ \\ S = a^2+4 \cdot \ S_{ 2 } = 12^2+4 \cdot \ 80.4984 \doteq 465.9938 = 465.994 \ dm^2







Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Tip: premeniť jednotky objemu vám pomôže náš prevodník jednotiek objemu. Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.

Ďaľšie podobné príklady a úlohy:

  1. Kocka
    sphere Kocke s hranou 1 m je opísaná guľa (vrcholy kocky ležia na povrchu gule). Určte veľkosť povrchu teto gule.
  2. Kocka v guľi
    cube_in_sphere_1 Kocka je vpísaná guli o objeme 5229 cm3. Určte dĺžku hrany kocky.
  3. Mimozemská loď
    cube_in_sphere Mimozemská loď má tvar gule o polomere r = 3000m a jej posádka potrebuje loďou odviezť nazbieraný výskumný materiál v boxe v tvare kvádra so štvorcovou podstavou. Určte dĺžku podstavy a (a výšku h) tak, aby mal box najväčší možný objem.
  4. Hranol X
    Cuboid_simple Hranol s hranami o dĺžkach x cm, 2x cm a 3x cm a má objem 48000 cm3. Akú veľkosť má povrch tohto hranola?
  5. Borovica - drevo
    dre-borovica Z kmeňa borovice dlhej 6 m s priemerom 35 cm sa má vyrezať trám s priečnym rezom v tvare štvorca tak, aby štvorec mal čo najväčší obsah. Vypočítajte dĺžku strany štvorca. Vypočítajte objem trámu v metroch kubických.
  6. Záhada zo stereometrie
    Tetrahedron Dva pravidelné štvorsteny majú povrchy 88 cm2 a 198 cm2. V akom pomere sú ich objemy? Zapíšte ako zlomok a ako riešenie zapíšte aj ako desatinné číslo zaokrúhlené na 4 desatinné miesta.
  7. Rezanie
    hranol_6 Alex rozrezal jedným rezom drevený kváder na dve časti. Ktoré teleso nemohol dostať?
  8. Ihlan
    3d_shapes Kváder ABCDEFGH má rozmery AB 3cm, BC 4 cm, CG 5 cm. Vypočítajte objem a povrch trojbokého ihlanu ADEC.
  9. Kocky
    squares_2 Jedna kocka je guli vpísaná a druhá opísaná. Vypočítajte rozdiel objemov v oboch kockách, ak rozdiel ich povrchov je 254 cm2.
  10. Guľa
    cone_sphere_center_1 Prienik roviny a gule je kruh s polomerom 60mm. Kužeľ , ktorého podstavou je tento kruh a ktorého vrchol leží v strede gule má výšku 34mm. Vypočítaj povrch a objem gule.
  11. Guľa vs. kocka
    koule_krychle Koľko % povrchu gule s polomerom 12 cm tvorí povrch kocky vpísanej robiť teto gule?
  12. Kocka v guľi
    sphere2 Kocka je vpísaná do gule s polomerom 402 cm. Koľko percent tvorí objem kocky z objemu gule?
  13. Dve gule
    balls-inside-cylinder Dve gule, jedna s polomerom 8 cm a ďalšia s polomerom 6 cm, sa vloži do valcovej plastovej nádoby s polomerom 10 cm. Nájdite množstvo vody potrebnej na ich potopenie.
  14. Kváder
    kvadr Nájdite kváder, ktorý má povrch rovnaký ako objem.
  15. Plastelína
    cubes3_6 Rasťo vymodeloval z plastelíny kváder s rozmermi 2cm,4cm,9cm. Potom plastelínu rozdelil na dve časti v pomere 1:8 z každej časti urobil kocku. V akom pomere sú povrchy týchto kociek?
  16. Obdĺžniková postava
    kvadr_diagonal Vypočítaj objem kvádra, ktorého telesová uhlopriečka u sa rovná 6.1 cm a obdĺžniková postava má rozmery 3.2cm a 2.4cm
  17. Telesová uhlopriečka kocky
    cubes_16 Vypočítajte telesovú uhlopriečku kocky, ak viete, že povrch jednej jej steny sa rovná 36 centimetrov štvorcových. Prosím, vypočítajte aj jej objem.