Štvorec

Body A[9,-6] a B[6,-7] sú susednými vrcholmi štvorca ABCD. Vypočítajte obsah štvorca ABCD.

Výsledok

S =  10

Riešenie:

a2=Δx2+Δy2  x0=9 y0=6 x1=6 y1=7  a=(x0x1)2+(y0y1)2=(96)2+((6)(7))2=103.1623  S=a2=3.16232=10a^2 = \Delta x^2 + \Delta y^2 \ \\ \ \\ x_{ 0 } = 9 \ \\ y_{ 0 } = -6 \ \\ x_{ 1 } = 6 \ \\ y_{ 1 } = -7 \ \\ \ \\ a = \sqrt{ (x_{ 0 }-x_{ 1 })^2+(y_{ 0 }-y_{ 1 })^2 } = \sqrt{ (9-6)^2+((-6)-(-7))^2 } = \sqrt{ 10 } \doteq 3.1623 \ \\ \ \\ S = a^2 = 3.1623^2 = 10







Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Základom výpočtov v analytickej geometrií je dobrá kalkulačka rovnice priamky, ktorá zo súradníc dvoch bodov v rovine vypočíta smernicový, normálový aj parametrický tvar priamky, smernicu, smerový uhol, smerový vektor, dĺžku úsečky, priesečníky so súradnícovými osami atď. Dva vektory určené veľkosťami a vzájomným uhlom sčíta naša kalkulačka sčítania vektorov. Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.

Ďaľšie podobné príklady a úlohy:

  1. Záhrada
    garden_1 Rozloha štvorcovej záhrady tvorí 2/3 rozlohy záhrady tvaru trojuholníka so stranami 176 m 110 m a 110 m. Koľko metrov pletiva potrebujem na oplotenie štvorcovej záhrady?
  2. Strana švorca
    square Vypočítaj dĺžku strany švorca, ktorého uhlopriečka má dĺžku 10 m.
  3. Poklad
    max_cylinder_pyramid Skauti majú stan v tvare pravidelného štvorbokého ihlanu so stranou podstavy 4 m a výške 3 m. Do stanu potrebujú schovať valcovú nádobu s tajným pokladom. Určte polomer r (a výšku h) nádoby tak, aby mohli schovať čo nejobjemnější poklad.
  4. Lichobežník MO
    right_trapezium Je daný pravouhlý lichobežník ABCD s pravým uhlom pri bode B, |AC| = 12, |CD| = 8, uhlopriečky sú na seba kolmé. Vypočítajte obvod a obsah takéhoto lichobežníka.
  5. Pravouhlý Δ
    ruler Pravouhlý trojuholník ma dĺžku odvesny 72 cm a dĺžku prepony 75 cm. Vypočítajte výšku trojuholníka.
  6. Dve tetivy 3
    tetivy Vypočítajte dĺžku tetivy AB a k nej kolmej tetivy BC, ak tetiva AB je od stredu kružnice k vzdialená 4 cm a tetiva BC má vzdialenosť 8 cm.
  7. Rez
    cone2 Osovým rezom kužeľa, ktorého povrch je 208 dm2, je rovnostranný trojuholník. Vypočítajte objem kužeľa.
  8. Pomer uhlopriečok
    face_diagonals Dĺžky hrán kvádra sú v pomere 1 : 2 : 3. Budú v takom istom pomere aj dĺžky jeho stenových uhlopriečok? Kváder má rozmery 5 cm, 10 cm a 15 cm. Vypočítaj veľkosť stenových uhlopriečok tohto kvádra.
  9. Obdĺžniková postava
    kvadr_diagonal Vypočítaj objem kvádra, ktorého telesová uhlopriečka u sa rovná 6.1 cm a obdĺžniková postava má rozmery 3.2cm a 2.4cm
  10. Stenové uhlopriečky
    diagonals_prism Vypočítaj dĺžky stenových a telesových uhlopriečok kvádra s rozmermi hrán 0,5 m, 1 m a 2 m
  11. Pologuľa
    naklon_koule Nádoba tvaru pologule je úplne naplnená vodou. Aký polomer má nádoba, keď z nej pri naklonení o 30 stupňov vytečie 10 l vody?
  12. Zrezaný kužeľ
    frustum-of-a-right-circular-cone Betónový podstavec má tvar pravouhlého zrezaného kruhového kužeľa s výškou 2,5 metra. Priemer hornej a dolnej základne je 3 stopy a 5 stôp. Určite bočnú plochu povrchu, celkovú plochu povrchu a objem podstavca.
  13. Výpočet z ťažníc
    triangle_rt_taznice Pravouhlý trojuholník, uhol C je 90 stupňov. Poznám ťažnicu ta = 8 cm a ťažnicu tb = 12 cm. .. Ako spočítať dĺžku strán?
  14. Stenové uhlopriečky
    cuboid_1 Ak sú stenové uhlopriečky kvádra x, y a z (diagonály), potom nájdite objem kvádra. Vyriešte pre x=1.8, y=1.1, z=1.45
  15. Kocka v guľi
    cube_in_sphere_1 Kocka je vpísaná guli o objeme 5229 cm3. Určte dĺžku hrany kocky.
  16. Tetiva
    circleChord Akú dĺžku d má tetiva kružnice s priemerom 94 dm, ak je vzdialená od stredu kružnice 41 dm?
  17. Obdĺžnik
    rectangle_inscribed_circle Obdĺžnik je 45 cm dlhý a 24 cm široký. Urči polomer kružnice opísanej obdĺžniku.