Tetiva

Akú dĺžku d má tetiva kružnice s priemerom 35 m, ak je vzdialená od stredu kružnice 10 m?


Výsledok

x =  28.723 m

Riešenie:

D=35 m t=10 m  r=D/2=35/2=352=17.5 m  (x/2)2=r2t2  x=2 r2t2=2 17.521025 3328.722828.723 mD=35 \ \text{m} \ \\ t=10 \ \text{m} \ \\ \ \\ r=D/2=35/2=\dfrac{ 35 }{ 2 }=17.5 \ \text{m} \ \\ \ \\ (x/2)^2=r^2 - t^2 \ \\ \ \\ x=2 \cdot \ \sqrt{ r^2-t^2 }=2 \cdot \ \sqrt{ 17.5^2-10^2 } \doteq 5 \ \sqrt{ 33 } \doteq 28.7228 \doteq 28.723 \ \text{m}



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby, ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlite. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 1 komentár:
#
Žiak
Zvoľ na kružnici bod A. Čo vytvoriastredy všetky tetív s jedným krajným bodom A

avatar









Tipy na súvisiace online kalkulačky
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 

 

 

 

Ďaľšie podobné príklady a úlohy:

  1. V kružnici
    tetiva2 V kružnici s priemerom d = 10 cm, je zostrojená tetiva o dĺžke 6 cm. Aký polomer by mala sústredná kružnica, ktorá by sa tejto tetivy dotýkala?
  2. Trojboký hranol
    hranol3b_1 Vypočítajte povrch pravidelného trojbokého hranola, ktorého hrany podstavy majú dĺžku 6 cm a výška hranola je 15 cm.
  3. Pravouhlý trojuholník
    rt_tr540 Pravouhlý trojuholník ABC má odvesnu a = 36 cm a obsah S = 540 cm2. Vypočítaj dĺžku odvesny b a ťažnicu tb.
  4. Uhlopriečky
    cube_diagonals Kváder má rozmery a = 4cm, b = 3cm a c = 12cm. Vypočítajte dĺžku stenovej a telesovej uhlopriečky.
  5. Dekanon
    decanon Vypočítajte obvod a obsah pravidelného 10 uholníka ak polomer opísanej kružnice r = 20 cm.
  6. Kvietok
    kvietok_MO Stvorcu bol opisany kruh a nad kazdou stranou stvorca ako nad priemerom bol vyzbaceny polkruh. Vznikli tak 4 "lupienky". Co je vacsie: obsah ustredneho stvorca, alebo obsah styroch lupienkov?
  7. Strešna krytina
    kuzel2 Koľko m2 strešnej krytiny je potreba na pokrytie strechy tvare kužeľa s priemerom 10 m a výškou 4 m? Na presahy počítaj 4% navyše.
  8. Šarkan 6
    sarkan Deti majú šarkana na šnúre dlhej 80m, ktorý sa vznáša nad miestom vzdialenom 25m od miesta kde stoja deti. Ako vysoko sa vznáša drak nad terénom?
  9. Sviečka - vosk
    cone_1 Kužeľovitá sviečka má priemer podstavy 20 cm a stranu 30 cm. Koľko dm ^ 3 vosku bolo treba na jej výrobu?
  10. Osobné autá
    crossing V akej vzdialenosti od seba budú 2 osobné autá po 2 hodinách jazdy, ak vyšli z tej istej garáže na dve na seba kolmé cesty, pričom jedno išlo rýchlosťou 82km/h a druhé išlo rýchlosťou 104km/h?
  11. Rez železničným
    nasyp Rez železničným násypom je rovnoramenný lichobežník, ktorého základne sú v pomere 5:3. Ramená majú dížku 5m, výška násypu v=4,8 m. Vypočítajte plochu rezu S.
  12. Guľový odsek
    Spherical_cap Guľová odsek má polomer podstavy 8cm a výšku 5 cm. Vypočítajte polomer gule, ktorej časťou je táto guľový odsek.
  13. Železnicný násyp
    nasyp Železničný násyp 300 m dlhý má priečny rez tvaru rovnoramenného lichobežníka so základňami 14 m a 8 m. Ramená lichobežníka sú dlhé 5 m. Vypočítajte koľko m3 zeminy je v násype?
  14. Vypočítaj 50
    345 Vypočítaj zvyšné strany pravouhlého trojuholníka ak poznáš b= 4cm a vc = 2,4cm.
  15. Vpísaný trojuholník
    rs_triangle2 Do štvorca s dĺžkou strany 1 je vpísaný rovnostranný trojuholník tak, že má so štvorcom jeden spoločný vrchol. Aký je obsah vpísaného trojuholníka?
  16. Tvorboký ihlan
    jehlan_4b_obdelnik Vypočítaj povrch štvorbokého ihlanu, ktorý má obdĺžnikovú podstavu s rozmermi a = 8 cm, b = 6 cm a výšku v = 10 cm.
  17. Výška kvádra
    diagonal_rectangular_prism Kváder s obdĺžnikovou podstavou s rozmermi 3cm a 4cm má telesovú uhlopriečku dlhú 13cm. Aká je výška kvádra?