MO B 2019 - uloha 2
Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
Výsledok
Výsledok

Zobrazujem 6 komentárov:

Dr Math
takto, 60 = 4*3*5
vypisem si dvojciferne cisla ktore nie su delitelne 5. Je ich 72. Podozrive cislo. V mnozine tychto 72 cisel su zarucene cisla ktore su delitelne cislom 3 aj 4 (napr. cislo 36 ...). Teda ak k tymto 72 cislam pridam akekolvek dvojciferne cislo, je zarucene delitelne 5 (lebo som vynechal len delitelne piatimi). Ak by som vynasobil vsetkych 73 cisel, zarucene mam ze vysledok nasobenia bude delitelny 3,4 aj 5, a preto aj 60.
vypisem si dvojciferne cisla ktore nie su delitelne 5. Je ich 72. Podozrive cislo. V mnozine tychto 72 cisel su zarucene cisla ktore su delitelne cislom 3 aj 4 (napr. cislo 36 ...). Teda ak k tymto 72 cislam pridam akekolvek dvojciferne cislo, je zarucene delitelne 5 (lebo som vynechal len delitelne piatimi). Ak by som vynasobil vsetkych 73 cisel, zarucene mam ze vysledok nasobenia bude delitelny 3,4 aj 5, a preto aj 60.

Dr Math
tych 72 zistim tak ze mame 100-10 = 90 ruznych dvojcifernych cisel. dvojcifernych cisel delitelnych 5 je 100/5 - 2 = 18. 90-18=72


Dr Math
cislo s presne 73 delitelmi najdem tak ze vynasobim prvych 73 prvocisel.,,, ak toto neviete, MO radsej nerieste... Samozrejme da sa to aj inak, napr. ked je v prvociselnom rozklade zlozene cislo 4 = 22, tak to zdvojnasobuje pocet vsetkych delitelov... To je potom komplikovanejsie.

Žiak
Zle som sa vyjadril. Práve 73 dvojciferných deliteľov - Podľa zadania. (Prvých 73 hocijakých je jasné, že prvočísla znásobiť.)

Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Ďaľšie podobné príklady a úlohy:
- MO Z7–I–3 2019
Roman má rád kúzla a matematiku. Naposledy čaroval s trojcifernými alebo štvorcifernými číslami takto: • z daného čísla vytvoril dve pomocné čísla tak, že ho rozdelil medzi ciframi na mieste stoviek a desiatok (napr. Z čísla 581 by dostal 5 a 81), • pomoc
- V Kocúrkove - Z8-I-6 2019 MO
V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
- Olympiády
Z 50 žiakov 44 riešilo aspoň jednu z olympiád - MO matematická olympiáda, BO biologická olympiáda. MO neriešilo 20 žiakov. Tých, čo riešili obidve olympiády, bola 1/3 z tých, čo riešili práve jednu olympiádu. Koľko žiakov riešilo len MO, len BO? Koľkí rie
- MO Z9-I-3 2018
V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a v
- Matematická súťaž
V matematickej súťaži riešili jej účastníci dve úlohy. Každý vyriešil aspoň jednu úlohu, pritom prvú úlohu vyriešilo 80 % účastníkov, druhú úlohu 50 %. Obidve úlohy vyriešilo 60 účastníkov. Koľko účastníkov mala súťaž?
- Komora
V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich p
- Na výtvarný
Na výtvarný kružok prišlo 10 detí. Osem deti malovalo farbami a deviati tušom. Kolko deti malovalo farbami aj tušom sučastne?
- Na ihrisku 2
Na ihrisku sú nakreslené tri rovnako veľké kruhy. Rozostavte 16 kolkov tak, aby v každom kruhu stálo 9 kolkov. Nájdite aspoň osem podstatne odlišných rozostavení, t. J. takých rozostavení, pri ktorých sa nerozlišujú kolky ani kruhy.
- Kubo a bača
Kubo sa dohovoril s bačom, že sa mu bude starať o ovce. Bača Kubovi sľúbil, že po roku služby dostane dvadsať zlatých a k tomu jednu ovcu. Lenže Kubo dal výpoveď, práve keď uplynul siedmy mesiac služby. Aj tak ho Bača spravodlivo odmenil a zaplatil mu päť
- Pre skupinu
Pre skupinu detí platí, že v každej trojici detí zo skupiny je chlapec menom Adam a v každej štvorici je dievča menom Beata. Koľko najviac detí môže byť v takejto skupine a aké sú v tom prípade ich mená?
- Odčítanie množín
Množina B - A ma dvakrát menej prvkov, ako množina A - B a štyrikrát menej prvkov ako množina A ∩ B. Koľkokrát viac prvkov má množina A, ako množina B?
- Z matematiky
Z matematiky alebo fyziky maturuje 78 študentov školy. Študentov, ktorí maturujú z matematiky a nematurujú z fyziky je trikrát viac ako tých, ktorí maturujú z fyziky a nematurujú z matematiky. Z matematiky maturuje 69 študentov. Koľko študentov maturuje z
- Dve množiny
Pre dve množiny K, L platí: K má 30 prvkov, L má 27 prvkov a množina L - K má 22 prvkov. Koľko prvkov má množina K - L?
- Pre dve
Pre dve neprázdne množiny A, B platí: A ∪ B má 16 prvkov, A ∩ B má 11 prvkov a množina A - B je prázdna. Koľko prvkov má množina B - A?
- Tri jazyky
Študenti VŠ si pri zápise vyberali cudzí jazyk do 1. ročníka. Spomedzi 120 zapísaných študentov si 75 zvolilo angličtinu, 65 nemčinu a 40 aj angličtinu a aj nemčinu. Použitím Vennovho diagramu určte: - koľko zo zapísaných študentov si zvolilo iba angličti
- Kurzy jazyka
Zo 60 zamestnancov firmy ich 28 chodí na kurz angličtiny, 17 na kurz nemčiny a 20 ľudí nechodí na žiadny z týchto kurzov. Koľko zamestnancov chodi na oba uvedené kurzy?
- Riešte 8
Riešte kvadratickú nerovnicu: -2x2 + 4x + 6 < 0