V Kocúrkove - Z8-I-6 2019 MO
V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne a bez vydávania. Sumu 53 kocúrkovských korún však bez vydávania zaplatiť nemožno. Zistite, ktoré hodnoty mohli byť na kocúrkovských minciach. Určte aspoň dve riešenia.
Správny výsledok:
Správny výsledok:

Najobľúbenejšie komentáre:



Markie
2, 55
3, 28
4, 19
7, 10
ale musim povedat, ze k tejto ulohe neviem urobit nejaky elegantny postup...
nemam rad ulohy, kde treba skusat...
3, 28
4, 19
7, 10
ale musim povedat, ze k tejto ulohe neviem urobit nejaky elegantny postup...
nemam rad ulohy, kde treba skusat...
1 rok 2 Likes




Franta
Frobeniovo číslo
Problém mincí (označovaný také jako problém frobenské mince nebo Frobeniův problém po matematikovi Ferdinandu Frobeniovi) je matematický problém, který hledá největší peněžní částku, kterou nelze získat pouze pomocí mincí určených nominálních hodnot. Například největší částka, kterou nelze získat pouze pomocí mincí 3 a 5 jednotek, je 7 jednotek.
Řešení tohoto problému pro danou sadu nominálních hodnot mincí se nazývá Frobeniovo číslo.
Frobeniovo číslo existuje, pokud sada nominálních hodnot mincí nemá společný dělitel větší než 1.
Pokud existují pouze dvě různé nominální hodnoty mincí x a y, potom pro Frobeniovo číslo existuje explicitní vzorec: xy − x − y.
Tento vzorec objevil James Joseph Sylvester v roce 1882.
Známe Frobeniovo číslo: 53, a máme určit x a y. Tedy:
xy – x – y = 53
xy – x – y + 1 = 53 + 1
x(y – 1) – (y – 1) = 54
(y – 1)(x – 1) = 54
Možné dvojice:
2 a 27, to je y = 3, x = 28
3 a 18, to je y = 4, x = 19
6 a 9, to je y = 7, x = 10
Problém mincí (označovaný také jako problém frobenské mince nebo Frobeniův problém po matematikovi Ferdinandu Frobeniovi) je matematický problém, který hledá největší peněžní částku, kterou nelze získat pouze pomocí mincí určených nominálních hodnot. Například největší částka, kterou nelze získat pouze pomocí mincí 3 a 5 jednotek, je 7 jednotek.
Řešení tohoto problému pro danou sadu nominálních hodnot mincí se nazývá Frobeniovo číslo.
Frobeniovo číslo existuje, pokud sada nominálních hodnot mincí nemá společný dělitel větší než 1.
Pokud existují pouze dvě různé nominální hodnoty mincí x a y, potom pro Frobeniovo číslo existuje explicitní vzorec: xy − x − y.
Tento vzorec objevil James Joseph Sylvester v roce 1882.
Známe Frobeniovo číslo: 53, a máme určit x a y. Tedy:
xy – x – y = 53
xy – x – y + 1 = 53 + 1
x(y – 1) – (y – 1) = 54
(y – 1)(x – 1) = 54
Možné dvojice:
2 a 27, to je y = 3, x = 28
3 a 18, to je y = 4, x = 19
6 a 9, to je y = 7, x = 10

Slniecko
V texte sa píše:" Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne a bez vydávania." Ako viete pomocou mincí napr. 3 a 28 zaplatiť sumu 54?


Matematik
3*9+28*1=55
... zasnem ze si ludia aspon elementarne overenie toho co tvrdia nevyskusaju na kalkulacke,,, alebo na internete:
https://www.hackmath.net/sk/kalkulacka/celociselne-diofantove-rovnice?input=3a%2B28b%3D55&submit=Vypo%C4%8D%C3%ADtaj
Je to ako pravo volit - ma ho kazdy. Ludia volia pocitmi, emociami, cize si zvolia zlych zastupcov... Pripadne takych ktory ich uplatia predvolebnou korupciou (zvysenie dochodkov, 13. dochodok...). Urcite by pravo volit malo byt nejak zmenene, napr. kazdy hlas by mal vahu rocnych dani ktore plati volič štátu. Kto platí málo, jeho hlas bude oslabený. Kto neplatí nič, bude mať nulový hlas.To bu potom do parlamentu neboli populisti vobec zvoleny.
... zasnem ze si ludia aspon elementarne overenie toho co tvrdia nevyskusaju na kalkulacke,,, alebo na internete:
https://www.hackmath.net/sk/kalkulacka/celociselne-diofantove-rovnice?input=3a%2B28b%3D55&submit=Vypo%C4%8D%C3%ADtaj
Je to ako pravo volit - ma ho kazdy. Ludia volia pocitmi, emociami, cize si zvolia zlych zastupcov... Pripadne takych ktory ich uplatia predvolebnou korupciou (zvysenie dochodkov, 13. dochodok...). Urcite by pravo volit malo byt nejak zmenene, napr. kazdy hlas by mal vahu rocnych dani ktore plati volič štátu. Kto platí málo, jeho hlas bude oslabený. Kto neplatí nič, bude mať nulový hlas.To bu potom do parlamentu neboli populisti vobec zvoleny.




Matematik
tak skusme: 54 = 55a+2b
a = 55b+2c
a>53
a<70
b>=0
c>=0
a1=54, b1=0, c1=27
a2=55, b2=1, c2=0
a3=56, b3=0, c3=28
a4=57, b4=1, c4=1
a5=58, b5=0, c5=29
a6=59, b6=1, c6=2
a7=60, b7=0, c7=30
a8=61, b8=1, c8=3
a9=62, b9=0, c9=31
a10=63, b10=1, c10=4
a11=64, b11=0, c11=32
a12=65, b12=1, c12=5
a13=66, b13=0, c13=33
a14=67, b14=1, c14=6
a15=68, b15=0, c15=34
a16=69, b16=1, c16=7
cize bingo... mozno jsme to zbytocne obmedzili ze obe mince musi byt mensi nez nebo rovne 53 ...
a = 55b+2c
a>53
a<70
b>=0
c>=0
a1=54, b1=0, c1=27
a2=55, b2=1, c2=0
a3=56, b3=0, c3=28
a4=57, b4=1, c4=1
a5=58, b5=0, c5=29
a6=59, b6=1, c6=2
a7=60, b7=0, c7=30
a8=61, b8=1, c8=3
a9=62, b9=0, c9=31
a10=63, b10=1, c10=4
a11=64, b11=0, c11=32
a12=65, b12=1, c12=5
a13=66, b13=0, c13=33
a14=67, b14=1, c14=6
a15=68, b15=0, c15=34
a16=69, b16=1, c16=7
cize bingo... mozno jsme to zbytocne obmedzili ze obe mince musi byt mensi nez nebo rovne 53 ...
Tipy na súvisiace online kalkulačky
Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Chcete previesť delenie prirodzených čísel - zistiť podiel a zvyšok?
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Chcete previesť delenie prirodzených čísel - zistiť podiel a zvyšok?
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Ďaľšie podobné príklady a úlohy:
- MO Z7–I–3 2019
Roman má rád kúzla a matematiku. Naposledy čaroval s trojcifernými alebo štvorcifernými číslami takto: • z daného čísla vytvoril dve pomocné čísla tak, že ho rozdelil medzi ciframi na mieste stoviek a desiatok (napr. Z čísla 581 by dostal 5 a 81), • pomoc
- MO B 2019 - uloha 2
Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
- Olympiády
Z 50 žiakov 44 riešilo aspoň jednu z olympiád - MO matematická olympiáda, BO biologická olympiáda. MO neriešilo 20 žiakov. Tých, čo riešili obidve olympiády, bola 1/3 z tých, čo riešili práve jednu olympiádu. Koľko žiakov riešilo len MO, len BO? Koľkí rie
- MO Z9-I-3 2018
V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a v
- Matematická súťaž
V matematickej súťaži riešili jej účastníci dve úlohy. Každý vyriešil aspoň jednu úlohu, pritom prvú úlohu vyriešilo 80 % účastníkov, druhú úlohu 50 %. Obidve úlohy vyriešilo 60 účastníkov. Koľko účastníkov mala súťaž?
- Komora
V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich p
- Na výtvarný
Na výtvarný kružok prišlo 10 detí. Osem deti malovalo farbami a deviati tušom. Kolko deti malovalo farbami aj tušom sučastne?
- Na ihrisku 2
Na ihrisku sú nakreslené tri rovnako veľké kruhy. Rozostavte 16 kolkov tak, aby v každom kruhu stálo 9 kolkov. Nájdite aspoň osem podstatne odlišných rozostavení, t. J. takých rozostavení, pri ktorých sa nerozlišujú kolky ani kruhy.
- Kubo a bača
Kubo sa dohovoril s bačom, že sa mu bude starať o ovce. Bača Kubovi sľúbil, že po roku služby dostane dvadsať zlatých a k tomu jednu ovcu. Lenže Kubo dal výpoveď, práve keď uplynul siedmy mesiac služby. Aj tak ho Bača spravodlivo odmenil a zaplatil mu päť
- Pre skupinu
Pre skupinu detí platí, že v každej trojici detí zo skupiny je chlapec menom Adam a v každej štvorici je dievča menom Beata. Koľko najviac detí môže byť v takejto skupine a aké sú v tom prípade ich mená?
- Odčítanie množín
Množina B - A ma dvakrát menej prvkov, ako množina A - B a štyrikrát menej prvkov ako množina A ∩ B. Koľkokrát viac prvkov má množina A, ako množina B?
- Z matematiky
Z matematiky alebo fyziky maturuje 78 študentov školy. Študentov, ktorí maturujú z matematiky a nematurujú z fyziky je trikrát viac ako tých, ktorí maturujú z fyziky a nematurujú z matematiky. Z matematiky maturuje 69 študentov. Koľko študentov maturuje z
- Dve množiny
Pre dve množiny K, L platí: K má 30 prvkov, L má 27 prvkov a množina L - K má 22 prvkov. Koľko prvkov má množina K - L?
- Pre dve
Pre dve neprázdne množiny A, B platí: A ∪ B má 16 prvkov, A ∩ B má 11 prvkov a množina A - B je prázdna. Koľko prvkov má množina B - A?
- Tri jazyky
Študenti VŠ si pri zápise vyberali cudzí jazyk do 1. ročníka. Spomedzi 120 zapísaných študentov si 75 zvolilo angličtinu, 65 nemčinu a 40 aj angličtinu a aj nemčinu. Použitím Vennovho diagramu určte: - koľko zo zapísaných študentov si zvolilo iba angličti
- Kurzy jazyka
Zo 60 zamestnancov firmy ich 28 chodí na kurz angličtiny, 17 na kurz nemčiny a 20 ľudí nechodí na žiadny z týchto kurzov. Koľko zamestnancov chodi na oba uvedené kurzy?
- Riešte 8
Riešte kvadratickú nerovnicu: -2x2 + 4x + 6 < 0